BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 19513758)

  • 21. A hybrid model framework for the optimization of preparative chromatographic processes.
    Nagrath D; Messac A; Bequette BW; Cramer SM
    Biotechnol Prog; 2004; 20(1):162-78. PubMed ID: 14763840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mesoscopic simulation of adsorption of peptides in a hydrophobic chromatography system.
    Makrodimitris K; Fernandez EJ; Woolf TB; O'Connell JP
    Anal Chem; 2005 Mar; 77(5):1243-52. PubMed ID: 15732903
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly sensitive and quantitative analysis of polyeptides using a new gradient system based on an abrupt change in adsorption of polypeptide to the reversed-phase column packing.
    Goda R; Sudo K
    Biomed Chromatogr; 2007 Oct; 21(10):1005-15. PubMed ID: 17549678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry.
    Roach P; Farrar D; Perry CC
    J Am Chem Soc; 2006 Mar; 128(12):3939-45. PubMed ID: 16551101
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models.
    Hjersted JL; Henson MA
    Biotechnol Prog; 2006; 22(5):1239-48. PubMed ID: 17022660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimisation and robustness analysis of a hydrophobic interaction chromatography step.
    Jakobsson N; Degerman M; Nilsson B
    J Chromatogr A; 2005 Dec; 1099(1-2):157-66. PubMed ID: 16213511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Macroscopic and microscopic analysis of mass transfer in reversed phase liquid chromatography.
    Bacskay I; Felinger A
    J Chromatogr A; 2009 Feb; 1216(8):1253-62. PubMed ID: 19081569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-throughput process development for recombinant protein purification.
    Rege K; Pepsin M; Falcon B; Steele L; Heng M
    Biotechnol Bioeng; 2006 Mar; 93(4):618-30. PubMed ID: 16369981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modelling and simulation of affinity membrane adsorption.
    Boi C; Dimartino S; Sarti GC
    J Chromatogr A; 2007 Aug; 1162(1):24-33. PubMed ID: 17331521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrophobic interaction chromatography of proteins V. Quantitative assessment of conformational changes.
    Ueberbacher R; Haimer E; Hahn R; Jungbauer A
    J Chromatogr A; 2008 Jul; 1198-1199():154-63. PubMed ID: 18541249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrated process for the purification of antibodies combining aqueous two-phase extraction, hydrophobic interaction chromatography and size-exclusion chromatography.
    Azevedo AM; Rosa PA; Ferreira IF; Aires-Barros MR
    J Chromatogr A; 2008 Dec; 1213(2):154-61. PubMed ID: 18995863
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calibration of chromatographic systems for quantitative prediction of chromatography of homopolymers.
    Gorbunov AA; Vakhrushev AV; Trathnigg B
    J Chromatogr A; 2009 Dec; 1216(51):8883-90. PubMed ID: 19913797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Case study and application of process analytical technology (PAT) towards bioprocessing: II. Use of ultra-performance liquid chromatography (UPLC) for making real-time pooling decisions for process chromatography.
    Rathore AS; Wood R; Sharma A; Dermawan S
    Biotechnol Bioeng; 2008 Dec; 101(6):1366-74. PubMed ID: 18814284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Refolding and purification of interferon-gamma in industry by hydrophobic interaction chromatography.
    Geng X; Bai Q; Zhang Y; Li X; Wu D
    J Biotechnol; 2004 Sep; 113(1-3):137-49. PubMed ID: 15380653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of diffusion coefficients of proteins in stationary phases by frontal chromatography.
    Kempe H; Persson P; Axelsson A; Nilsson B; Zacchi G
    Biotechnol Bioeng; 2006 Mar; 93(4):656-64. PubMed ID: 16372360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monitoring and control of Gluconacetobacter xylinus fed-batch cultures using in situ mid-IR spectroscopy.
    Kornmann H; Valentinotti S; Duboc P; Marison I; von Stockar U
    J Biotechnol; 2004 Sep; 113(1-3):231-45. PubMed ID: 15380658
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Confocal laser scanning microscopy as an analytical tool in chromatographic research.
    Hubbuch J; Kula MR
    Bioprocess Biosyst Eng; 2008 Apr; 31(3):241-59. PubMed ID: 18196281
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of phenyl sepharose ligand density on protein monomer/aggregate purification and separation using hydrophobic interaction chromatography.
    McCue JT; Engel P; Thömmes J
    J Chromatogr A; 2009 Feb; 1216(6):902-9. PubMed ID: 19100554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrophobic interaction chromatography of proteins: thermodynamic analysis of conformational changes.
    Ueberbacher R; Rodler A; Hahn R; Jungbauer A
    J Chromatogr A; 2010 Jan; 1217(2):184-90. PubMed ID: 19501365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feedback regulation in preparative elution chromatography.
    Frey DD
    Biotechnol Prog; 1991; 7(3):213-24. PubMed ID: 1367594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.