These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 19514061)

  • 1. Functional annotations improve the predictive score of human disease-related mutations in proteins.
    Calabrese R; Capriotti E; Fariselli P; Martelli PL; Casadio R
    Hum Mutat; 2009 Aug; 30(8):1237-44. PubMed ID: 19514061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. E-SNPs&GO: embedding of protein sequence and function improves the annotation of human pathogenic variants.
    Manfredi M; Savojardo C; Martelli PL; Casadio R
    Bioinformatics; 2022 Nov; 38(23):5168-5174. PubMed ID: 36227117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information.
    Capriotti E; Calabrese R; Casadio R
    Bioinformatics; 2006 Nov; 22(22):2729-34. PubMed ID: 16895930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mouse SNP Miner: an annotated database of mouse functional single nucleotide polymorphisms.
    Reuveni E; Ramensky VE; Gross C
    BMC Genomics; 2007 Jan; 8():24. PubMed ID: 17239255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale protein annotation through gene ontology.
    Xie H; Wasserman A; Levine Z; Novik A; Grebinskiy V; Shoshan A; Mintz L
    Genome Res; 2002 May; 12(5):785-94. PubMed ID: 11997345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TreeGrafter: phylogenetic tree-based annotation of proteins with Gene Ontology terms and other annotations.
    Tang H; Finn RD; Thomas PD
    Bioinformatics; 2019 Feb; 35(3):518-520. PubMed ID: 30032202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting ontology graph for predicting sparsely annotated gene function.
    Wang S; Cho H; Zhai C; Berger B; Peng J
    Bioinformatics; 2015 Jun; 31(12):i357-64. PubMed ID: 26072504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Information theory applied to the sparse gene ontology annotation network to predict novel gene function.
    Tao Y; Sam L; Li J; Friedman C; Lussier YA
    Bioinformatics; 2007 Jul; 23(13):i529-38. PubMed ID: 17646340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SNAP: predict effect of non-synonymous polymorphisms on function.
    Bromberg Y; Rost B
    Nucleic Acids Res; 2007; 35(11):3823-35. PubMed ID: 17526529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MutDB: update on development of tools for the biochemical analysis of genetic variation.
    Singh A; Olowoyeye A; Baenziger PH; Dantzer J; Kann MG; Radivojac P; Heiland R; Mooney SD
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D815-9. PubMed ID: 17827212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blind prediction of deleterious amino acid variations with SNPs&GO.
    Capriotti E; Martelli PL; Fariselli P; Casadio R
    Hum Mutat; 2017 Sep; 38(9):1064-1071. PubMed ID: 28102005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LS-SNP: large-scale annotation of coding non-synonymous SNPs based on multiple information sources.
    Karchin R; Diekhans M; Kelly L; Thomas DJ; Pieper U; Eswar N; Haussler D; Sali A
    Bioinformatics; 2005 Jun; 21(12):2814-20. PubMed ID: 15827081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MutDB: annotating human variation with functionally relevant data.
    Mooney SD; Altman RB
    Bioinformatics; 2003 Sep; 19(14):1858-60. PubMed ID: 14512363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebro-oculo-facio-skeletal syndrome with a nucleotide excision-repair defect and a mutated XPD gene, with prenatal diagnosis in a triplet pregnancy.
    Graham JM; Anyane-Yeboa K; Raams A; Appeldoorn E; Kleijer WJ; Garritsen VH; Busch D; Edersheim TG; Jaspers NG
    Am J Hum Genet; 2001 Aug; 69(2):291-300. PubMed ID: 11443545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NewGOA: Predicting New GO Annotations of Proteins by Bi-Random Walks on a Hybrid Graph.
    Yu G; Fu G; Wang J; Zhao Y
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1390-1402. PubMed ID: 28641268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alport syndrome. Molecular genetic aspects.
    Hertz JM
    Dan Med Bull; 2009 Aug; 56(3):105-52. PubMed ID: 19728970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RAI1 variations in Smith-Magenis syndrome patients without 17p11.2 deletions.
    Girirajan S; Elsas LJ; Devriendt K; Elsea SH
    J Med Genet; 2005 Nov; 42(11):820-8. PubMed ID: 15788730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene Ontology annotation quality analysis in model eukaryotes.
    Buza TJ; McCarthy FM; Wang N; Bridges SM; Burgess SC
    Nucleic Acids Res; 2008 Feb; 36(2):e12. PubMed ID: 18187504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two novel mutations confirm FGD1 is responsible for the Aarskog syndrome.
    Schwartz CE; Gillessen-Kaesbach G; May M; Cappa M; Gorski J; Steindl K; Neri G
    Eur J Hum Genet; 2000 Nov; 8(11):869-74. PubMed ID: 11093277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving protein function prediction using protein sequence and GO-term similarities.
    Makrodimitris S; van Ham RCHJ; Reinders MJT
    Bioinformatics; 2019 Apr; 35(7):1116-1124. PubMed ID: 30169569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.