BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 19514266)

  • 1. [Functions of Cdk5 in non-neuronal tissues: focusing on regulation of insulin secretion].
    Tomizawa K
    Tanpakushitsu Kakusan Koso; 2009 Jun; 54(7):808-12. PubMed ID: 19514266
    [No Abstract]   [Full Text] [Related]  

  • 2. Functional loss of Cdkal1, a novel tRNA modification enzyme, causes the development of type 2 diabetes.
    Wei FY; Tomizawa K
    Endocr J; 2011; 58(10):819-25. PubMed ID: 21908934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cdk5 inhibitory peptide (CIP) inhibits Cdk5/p25 activity induced by high glucose in pancreatic beta cells and recovers insulin secretion from p25 damage.
    Zheng YL; Li C; Hu YF; Cao L; Wang H; Li B; Lu XH; Bao L; Luo HY; Shukla V; Amin ND; Pant HC
    PLoS One; 2013; 8(9):e63332. PubMed ID: 24039692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beta-cell failure, stress, and type 2 diabetes.
    Kaufman RJ
    N Engl J Med; 2011 Nov; 365(20):1931-3. PubMed ID: 22087686
    [No Abstract]   [Full Text] [Related]  

  • 5. tRNA modifications and islet function.
    Wei FY; Tomizawa K
    Diabetes Obes Metab; 2018 Sep; 20 Suppl 2():20-27. PubMed ID: 30230180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The carriage of risk variants of CDKAL1 impairs beta-cell function in both diabetic and non-diabetic patients and reduces response to non-sulfonylurea and sulfonylurea agonists of the pancreatic KATP channel.
    Chistiakov DA; Potapov VA; Smetanina SA; Bel'chikova LN; Suplotova LA; Nosikov VV
    Acta Diabetol; 2011 Sep; 48(3):227-35. PubMed ID: 21611789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-nucleotide polymorphism rs7754840 of CDKAL1 is associated with impaired insulin secretion in nondiabetic offspring of type 2 diabetic subjects and in a large sample of men with normal glucose tolerance.
    Stancáková A; Pihlajamäki J; Kuusisto J; Stefan N; Fritsche A; Häring H; Andreozzi F; Succurro E; Sesti G; Boesgaard TW; Hansen T; Pedersen O; Jansson PA; Hammarstedt A; Smith U; Laakso M;
    J Clin Endocrinol Metab; 2008 May; 93(5):1924-30. PubMed ID: 18285412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cdk5-dependent regulation of glucose-stimulated insulin secretion.
    Wei FY; Nagashima K; Ohshima T; Saheki Y; Lu YF; Matsushita M; Yamada Y; Mikoshiba K; Seino Y; Matsui H; Tomizawa K
    Nat Med; 2005 Oct; 11(10):1104-8. PubMed ID: 16155576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individualized therapy for type 2 diabetes: clinical implications of pharmacogenetic data.
    Mannino GC; Sesti G
    Mol Diagn Ther; 2012 Oct; 16(5):285-302. PubMed ID: 23018631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of p35 in Min6 pancreatic beta cells induces a stressed neuron-like apoptosis.
    Zheng YL; Hu YF; Zhang A; Wang W; Li B; Amin N; Grant P; Pant HC
    J Neurol Sci; 2010 Dec; 299(1-2):101-7. PubMed ID: 20926102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNAi screening in primary human hepatocytes of genes implicated in genome-wide association studies for roles in type 2 diabetes identifies roles for CAMK1D and CDKAL1, among others, in hepatic glucose regulation.
    Haney S; Zhao J; Tiwari S; Eng K; Guey LT; Tien E
    PLoS One; 2013; 8(6):e64946. PubMed ID: 23840313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative PCR measurement of tRNA 2-methylthio modification for assessing type 2 diabetes risk.
    Xie P; Wei FY; Hirata S; Kaitsuka T; Suzuki T; Suzuki T; Tomizawa K
    Clin Chem; 2013 Nov; 59(11):1604-12. PubMed ID: 23974085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation in the CDKAL1 gene is associated with the titer of antibodies to GAD.
    Haupt A; Guthoff M; Gallwitz B; Haring HU; Fritsche A
    Diabetes Care; 2008 Sep; 31(9):e66. PubMed ID: 18753662
    [No Abstract]   [Full Text] [Related]  

  • 14. Cdk5 phosphorylates PLD2 to mediate EGF-dependent insulin secretion.
    Lee HY; Jung H; Jang IH; Suh PG; Ryu SH
    Cell Signal; 2008 Oct; 20(10):1787-94. PubMed ID: 18625302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of CDKAL1 affects mitochondrial ATP generation and first-phase insulin exocytosis.
    Ohara-Imaizumi M; Yoshida M; Aoyagi K; Saito T; Okamura T; Takenaka H; Akimoto Y; Nakamichi Y; Takanashi-Yanobu R; Nishiwaki C; Kawakami H; Kato N; Hisanaga S; Kakei M; Nagamatsu S
    PLoS One; 2010 Dec; 5(12):e15553. PubMed ID: 21151568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The CDKAL1 gene is associated with impaired insulin secretion and glucose-related traits: the Cardiometabolic Risk in Chinese (CRC) study.
    Liang J; Pei Y; Liu X; Qiu Q; Sun Y; Zhu Y; Yang M; Qi L
    Clin Endocrinol (Oxf); 2015 Nov; 83(5):651-5. PubMed ID: 26119585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a splicing variant that regulates type 2 diabetes risk factor CDKAL1 level by a coding-independent mechanism in human.
    Zhou B; Wei FY; Kanai N; Fujimura A; Kaitsuka T; Tomizawa K
    Hum Mol Genet; 2014 Sep; 23(17):4639-50. PubMed ID: 24760768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclin-dependent kinase 5 (Cdk5): a potential therapeutic target for the treatment of neurodegenerative diseases and diabetes mellitus.
    Wei FY; Tomizawa K
    Mini Rev Med Chem; 2007 Oct; 7(10):1070-4. PubMed ID: 17979810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of cyclin-dependent kinase 5 activity protects pancreatic beta cells from glucotoxicity.
    Ubeda M; Rukstalis JM; Habener JF
    J Biol Chem; 2006 Sep; 281(39):28858-64. PubMed ID: 16887799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic origins of low birth weight.
    Yaghootkar H; Freathy RM
    Curr Opin Clin Nutr Metab Care; 2012 May; 15(3):258-64. PubMed ID: 22406741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.