These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 19514810)
1. Spatially explicit West Nile virus risk modeling in Santa Clara County, California. Konrad SK; Miller SN; Reeves WK; Tietze NS Vector Borne Zoonotic Dis; 2009 Jun; 9(3):267-74. PubMed ID: 19514810 [TBL] [Abstract][Full Text] [Related]
2. Extrinsic Incubation Rate is Not Accelerated in Recent California Strains of West Nile Virus in Culex tarsalis (Diptera: Culicidae). Danforth ME; Reisen WK; Barker CM J Med Entomol; 2015 Sep; 52(5):1083-9. PubMed ID: 26336222 [TBL] [Abstract][Full Text] [Related]
3. Effects of temperature on the transmission of west nile virus by Culex tarsalis (Diptera: Culicidae). Reisen WK; Fang Y; Martinez VM J Med Entomol; 2006 Mar; 43(2):309-17. PubMed ID: 16619616 [TBL] [Abstract][Full Text] [Related]
4. Horizontal and vertical transmission of West Nile virus genotype NY99 by Culex salinarius and genotypes NY99 and WN02 by Culex tarsalis. Anderson JF; Main AJ; Cheng G; Ferrandino FJ; Fikrig E Am J Trop Med Hyg; 2012 Jan; 86(1):134-9. PubMed ID: 22232464 [TBL] [Abstract][Full Text] [Related]
5. Geographic variation in vector competence for West Nile virus in the Culex pipiens (Diptera: Culicidae) complex in California. Vaidyanathan R; Scott TW Vector Borne Zoonotic Dis; 2007; 7(2):193-8. PubMed ID: 17627438 [TBL] [Abstract][Full Text] [Related]
6. The geosimulation of West Nile virus propagation: a multi-agent and climate sensitive tool for risk management in public health. Bouden M; Moulin B; Gosselin P Int J Health Geogr; 2008 Jul; 7():35. PubMed ID: 18606008 [TBL] [Abstract][Full Text] [Related]
7. Modeling Culex tarsalis abundance on the northern Colorado front range using a landscape-level approach. Schurich JA; Kumar S; Eisen L; Moore CG J Am Mosq Control Assoc; 2014 Mar; 30(1):7-20. PubMed ID: 24772672 [TBL] [Abstract][Full Text] [Related]
8. Vector competence of Culex tarsalis from Orange County, California, for West Nile virus. Turell MJ; O'Guinn ML; Dohm DJ; Webb JP; Sardelis MR Vector Borne Zoonotic Dis; 2002; 2(3):193-6. PubMed ID: 12737548 [TBL] [Abstract][Full Text] [Related]
9. Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999-2003. Andreadis TG; Anderson JF; Vossbrinck CR; Main AJ Vector Borne Zoonotic Dis; 2004; 4(4):360-78. PubMed ID: 15682518 [TBL] [Abstract][Full Text] [Related]
10. Importance of vertical and horizontal transmission of West Nile virus by Culex pipiens in the Northeastern United States. Anderson JF; Main AJ J Infect Dis; 2006 Dec; 194(11):1577-9. PubMed ID: 17083043 [TBL] [Abstract][Full Text] [Related]
11. Application of a degree-day model of West Nile virus transmission risk to the East Coast of the United States of America. Konrad SK; Miller SN Geospat Health; 2012 Nov; 7(1):15-20. PubMed ID: 23242676 [TBL] [Abstract][Full Text] [Related]
12. Identification of Culex pipiens complex mosquitoes in a hybrid zone of West Nile virus transmission in Fresno County, California. McAbee RD; Green EN; Holeman J; Christiansen J; Frye N; Dealey K; Mulligan FS; Brault AC; Cornel AJ Am J Trop Med Hyg; 2008 Feb; 78(2):303-10. PubMed ID: 18256434 [TBL] [Abstract][Full Text] [Related]
13. Host feeding pattern of Culex quinquefasciatus (Diptera: Culicidae) and its role in transmission of West Nile virus in Harris County, Texas. Molaei G; Andreadis TG; Armstrong PM; Bueno R; Dennett JA; Real SV; Sargent C; Bala A; Randle Y; Guzman H; Travassos da Rosa A; Wuithiranyagool T; Tesh RB Am J Trop Med Hyg; 2007 Jul; 77(1):73-81. PubMed ID: 17620633 [TBL] [Abstract][Full Text] [Related]
14. A two-year evaluation of elevated canopy trapping for Culex mosquitoes and West Nile virus in an operational surveillance program in the northeastern United States. Andreadis TG; Armstrong PM J Am Mosq Control Assoc; 2007 Jun; 23(2):137-48. PubMed ID: 17847845 [TBL] [Abstract][Full Text] [Related]
15. Increases in the competitive fitness of West Nile virus isolates after introduction into California. Worwa G; Hutton AA; Frey M; Duggal NK; Brault AC; Reisen WK Virology; 2018 Jan; 514():170-181. PubMed ID: 29195094 [TBL] [Abstract][Full Text] [Related]
16. Spatiotemporal Co-occurrence of Flanders and West Nile Viruses Within Culex Populations in Shelby County, Tennessee. Lucero DE; Carlson TC; Delisle J; Poindexter S; Jones TF; Moncayo AC J Med Entomol; 2016 May; 53(3):526-532. PubMed ID: 27026162 [TBL] [Abstract][Full Text] [Related]
17. Experimental West Nile virus infection in jungle crows (Corvus macrorhynchos). Shirafuji H; Kanehira K; Kubo M; Shibahara T; Kamio T Am J Trop Med Hyg; 2008 May; 78(5):838-42. PubMed ID: 18458322 [TBL] [Abstract][Full Text] [Related]
18. A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes. Moudy RM; Meola MA; Morin LL; Ebel GD; Kramer LD Am J Trop Med Hyg; 2007 Aug; 77(2):365-70. PubMed ID: 17690414 [TBL] [Abstract][Full Text] [Related]
19. High subclinical West Nile virus incidence among nonvaccinated horses in northern California associated with low vector abundance and infection. Nielsen CF; Reisen WK; Armijos MV; Maclachlan NJ; Scott TW Am J Trop Med Hyg; 2008 Jan; 78(1):45-52. PubMed ID: 18187784 [TBL] [Abstract][Full Text] [Related]
20. Modelling the dynamics of West Nile Virus. Cruz-Pacheco G; Esteva L; MontaƱo-Hirose JA; Vargas C Bull Math Biol; 2005 Nov; 67(6):1157-72. PubMed ID: 16125762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]