BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1459 related articles for article (PubMed ID: 19514893)

  • 21. Strategies to use phytoextraction in very acidic soil contaminated by heavy metals.
    Pedron F; Petruzzelli G; Barbafieri M; Tassi E
    Chemosphere; 2009 May; 75(6):808-14. PubMed ID: 19217142
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge.
    Kidd PS; Domínguez-Rodríguez MJ; Díez J; Monterroso C
    Chemosphere; 2007 Jan; 66(8):1458-67. PubMed ID: 17109934
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal.
    Rajkumar M; Ma Y; Freitas H
    J Basic Microbiol; 2008 Dec; 48(6):500-8. PubMed ID: 18785659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Agro-improving method of phytoextracting heavy metal contaminated soil.
    Wei S; Teixeira da Silva JA; Zhou Q
    J Hazard Mater; 2008 Feb; 150(3):662-8. PubMed ID: 17582683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth.
    Li K; Ramakrishna W
    J Hazard Mater; 2011 May; 189(1-2):531-9. PubMed ID: 21420236
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings.
    Zhang WH; Huang Z; He LY; Sheng XF
    Chemosphere; 2012 Jun; 87(10):1171-8. PubMed ID: 22397839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rhizosphere bacteria of Costularia spp. from ultramafic soils in New Caledonia: diversity, tolerance to extreme edaphic conditions, and role in plant growth and mineral nutrition.
    Gonin M; Gensous S; Lagrange A; Ducousso M; Amir H; Jourand P
    Can J Microbiol; 2013 Mar; 59(3):164-74. PubMed ID: 23540334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress.
    Gamalero E; Lingua G; Berta G; Glick BR
    Can J Microbiol; 2009 May; 55(5):501-14. PubMed ID: 19483778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pseudometallophytes colonising Pb/Zn mine tailings: a description of the plant-microorganism-rhizosphere soil system and isolation of metal-tolerant bacteria.
    Becerra-Castro C; Monterroso C; Prieto-Fernández A; Rodríguez-Lamas L; Loureiro-Viñas M; Acea MJ; Kidd PS
    J Hazard Mater; 2012 May; 217-218():350-9. PubMed ID: 22483595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metallomics: lessons for metalliferous soil remediation.
    Haferburg G; Kothe E
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1271-80. PubMed ID: 20532755
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape.
    Sheng XF; Xia JJ; Jiang CY; He LY; Qian M
    Environ Pollut; 2008 Dec; 156(3):1164-70. PubMed ID: 18490091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications.
    Phieler R; Voit A; Kothe E
    Adv Biochem Eng Biotechnol; 2014; 141():211-35. PubMed ID: 23719709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic and phylogenetic analysis of microbial communities during phytoremediation of soil contaminated with weathered hydrocarbons and heavy metals.
    Palmroth MR; Koskinen PE; Kaksonen AH; Münster U; Pichtel J; Puhakka JA
    Biodegradation; 2007 Dec; 18(6):769-82. PubMed ID: 17372705
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil.
    Lin Q; Wang Z; Ma S; Chen Y
    Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria.
    Braud A; Jézéquel K; Bazot S; Lebeau T
    Chemosphere; 2009 Jan; 74(2):280-6. PubMed ID: 18945474
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Advances in the research of genetic engineering of heavy metal resistance and accumulation in plants].
    Lang ML; Zhang YX; Chai TY
    Sheng Wu Gong Cheng Xue Bao; 2004 Mar; 20(2):157-64. PubMed ID: 15969101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance.
    Zhang X; Lin L; Chen M; Zhu Z; Yang W; Chen B; Yang X; An Q
    J Hazard Mater; 2012 Aug; 229-230():361-70. PubMed ID: 22749969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea.
    Kumar KV; Srivastava S; Singh N; Behl HM
    J Hazard Mater; 2009 Oct; 170(1):51-7. PubMed ID: 19487076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus.
    Jing YX; Yan JL; He HD; Yang DJ; Xiao L; Zhong T; Yuan M; Cai XD; Li SB
    Int J Phytoremediation; 2014; 16(4):321-33. PubMed ID: 24912234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 73.