These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 19514915)

  • 1. Model equations for the kinetics of covalent irreversible enzyme inhibition and spontaneous reactivation: esterases and organophosphorus compounds.
    Estevez J; Vilanova E
    Crit Rev Toxicol; 2009; 39(5):427-48. PubMed ID: 19514915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition with spontaneous reactivation and the "ongoing inhibition" effect of esterases by biotinylated organophosphorus compounds: S9B as a model.
    Estévez J; Barril J; Vilanova E
    Chem Biol Interact; 2010 Sep; 187(1-3):397-402. PubMed ID: 20493177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The inhibition of the high sensitive peripheral nerve soluble esterases by mipafox. A new mathematical processing for the kinetics of inhibition of esterases by organophosphorus compounds.
    Estévez J; García-Pérez AG; Barril J; Pellín M; Vilanova E
    Toxicol Lett; 2004 Jun; 151(1):171-81. PubMed ID: 15177652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition with spontaneous reactivation of carboxyl esterases by organophosphorus compounds: paraoxon as a model.
    Estévez J; García-Pérez A; Barril J; Vilanova E
    Chem Res Toxicol; 2011 Jan; 24(1):135-43. PubMed ID: 21155548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of inhibition of soluble peripheral nerve esterases by PMSF: a non-stable compound that potentiates the organophosphorus-induced delayed neurotoxicity.
    Estévez J; Barril J; Vilanova E
    Arch Toxicol; 2012 May; 86(5):767-77. PubMed ID: 22354540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of neuropathy inducers and potentiators/promoters with soluble esterases.
    Estévez J; Mangas I; Sogorb MÁ; Vilanova E
    Chem Biol Interact; 2013 Mar; 203(1):245-50. PubMed ID: 23200747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition with simultaneous spontaneous reactivation and aging of acetylcholinesterase by organophosphorus compounds: Demeton-S-methyl as a model.
    Estévez J; Pizarro L; Marsillach J; Furlong C; Sogorb MA; Richter R; Vilanova E
    Chem Biol Interact; 2024 Jan; 387():110789. PubMed ID: 37931869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenylmethylsulfonyl fluoride, a potentiator of neuropathy, alters the interaction of organophosphorus compounds with soluble brain esterases.
    Mangas I; Vilanova E; Estévez J
    Chem Res Toxicol; 2012 Nov; 25(11):2393-401. PubMed ID: 23009703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mipafox-inhibited catalytic domain of human neuropathy target esterase ages by reversible proton loss.
    Kropp TJ; Glynn P; Richardson RJ
    Biochemistry; 2004 Mar; 43(12):3716-22. PubMed ID: 15035642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of pentylsarin analogues with human acetylcholinesterase: a kinetic study.
    Worek F; Herkert NM; Koller M; Aurbek N; Thiermann H
    Toxicol Lett; 2009 Jun; 187(2):119-23. PubMed ID: 19429253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-activity analysis of aging and reactivation of human butyrylcholinesterase inhibited by analogues of tabun.
    Carletti E; Aurbek N; Gillon E; Loiodice M; Nicolet Y; Fontecilla-Camps JC; Masson P; Thiermann H; Nachon F; Worek F
    Biochem J; 2009 Jun; 421(1):97-106. PubMed ID: 19368529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of aging of mipafox-inhibited butyrylcholinesterase.
    Kropp TJ; Richardson RJ
    Chem Res Toxicol; 2007 Mar; 20(3):504-10. PubMed ID: 17323978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactivation of phosphorodiamidated acetylcholinesterase and neuropathy target esterase by treatment of inhibited enzyme with potassium fluoride.
    Milatovic D; Johnson MK
    Chem Biol Interact; 1993 Jun; 87(1-3):425-30. PubMed ID: 8343998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Operational control of stereoselectivity during the enzymatic hydrolysis of racemic organophosphorus compounds.
    Li Y; Aubert SD; Raushel FM
    J Am Chem Soc; 2003 Jun; 125(25):7526-7. PubMed ID: 12812487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvements of enzyme activity and enantioselectivity via combined substrate engineering and covalent immobilization.
    Wang PY; Tsai SW; Chen TL
    Biotechnol Bioeng; 2008 Oct; 101(3):460-9. PubMed ID: 18435484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Aging of cholinesterase after inhibition by organophosphates].
    Curtil C; Masson P
    Ann Pharm Fr; 1993; 51(2):63-77. PubMed ID: 8250487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights on molecular interactions of organophosphorus pesticides with esterases.
    Mangas I; Estevez J; Vilanova E; França TC
    Toxicology; 2017 Feb; 376():30-43. PubMed ID: 27311923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suitability of human butyrylcholinesterase as therapeutic marker and pseudo catalytic scavenger in organophosphate poisoning: a kinetic analysis.
    Aurbek N; Thiermann H; Eyer F; Eyer P; Worek F
    Toxicology; 2009 May; 259(3):133-9. PubMed ID: 19428953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bovine chromaffin cell cultures as model to study organophosporus neurotoxicity.
    Quesada E; Sogorb MA; Vilanova E; Carrera V
    Toxicol Lett; 2004 Jun; 151(1):163-70. PubMed ID: 15177651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aging of mipafox-inhibited human acetylcholinesterase proceeds by displacement of both isopropylamine groups to yield a phosphate adduct.
    Kropp TJ; Richardson RJ
    Chem Res Toxicol; 2006 Feb; 19(2):334-9. PubMed ID: 16485911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.