These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 19515479)

  • 1. Adaptive management for mitigating Cryptosporidium risk in source water: a case study in an agricultural catchment in South Australia.
    Bryan BA; Kandulu J; Deere DA; White M; Frizenschaf J; Crossman ND
    J Environ Manage; 2009 Jul; 90(10):3122-34. PubMed ID: 19515479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A micro case study of the legal and administrative arrangements for river health in the Kangaroo River (NSW).
    Mooney C; Farrier D
    Water Sci Technol; 2002; 45(11):161-8. PubMed ID: 12171348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a process-based model to predict pathogen budgets for the Sydney drinking water catchment.
    Ferguson CM; Croke BF; Beatson PJ; Ashbolt NJ; Deere DA
    J Water Health; 2007 Jun; 5(2):187-208. PubMed ID: 17674569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genotypes of Cryptosporidium from Sydney water catchment areas.
    Ryan U; Read C; Hawkins P; Warnecke M; Swanson P; Griffith M; Deere D; Cunningham M; Cox P
    J Appl Microbiol; 2005; 98(5):1221-9. PubMed ID: 15836492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a risk-based index for source water protection planning, which supports the reduction of pathogens from agricultural activity entering water resources.
    Goss M; Richards C
    J Environ Manage; 2008 Jun; 87(4):623-32. PubMed ID: 18158213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Risk-based targeting of diffuse contaminant sources at variable spatial scales in a New Zealand high country catchment.
    Caruso BS
    J Environ Manage; 2001 Nov; 63(3):249-68. PubMed ID: 11775498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling Cryptosporidium oocysts transport in small ungauged agricultural catchments.
    Tang J; McDonald S; Peng X; Samadder SR; Murphy TM; Holden NM
    Water Res; 2011 Jun; 45(12):3665-80. PubMed ID: 21555142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deterministic model to quantify pathogen loads in drinking water catchments: pathogen budget for the Wingecarribee.
    Ferguson CM; Croke B; Ashbolt NJ; Deere DA
    Water Sci Technol; 2005; 52(8):191-7. PubMed ID: 16312967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is risk associated with drinking water in Australia of significant concern to justify mandatory regulation?
    McKay J; Moeller A
    Environ Manage; 2001 Oct; 28(4):469-81. PubMed ID: 11494066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated watershed approach in controlling point and non-point source pollution within Zelivka drinking water reservoir.
    Holas J; Hrncir M
    Water Sci Technol; 2002; 45(9):293-300. PubMed ID: 12079117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Valuing the subsurface pathogen treatment barrier in water recycling via aquifers for drinking supplies.
    Page D; Dillon P; Toze S; Bixio D; Genthe B; Jiménez Cisneros BE; Wintgens T
    Water Res; 2010 Mar; 44(6):1841-52. PubMed ID: 20042212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Centralised versus decentralised sewage systems: a comparison of pathogen and nutrient loads released into Sydney's drinking water catchments.
    Charles K; Ashbolt N; Ferguson C; Roser D; McGuinness R; Deere D
    Water Sci Technol; 2003; 48(11-12):53-60. PubMed ID: 14753518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative risk assessment of Cryptosporidium in tap water in Ireland.
    Cummins E; Kennedy R; Cormican M
    Sci Total Environ; 2010 Jan; 408(4):740-53. PubMed ID: 19945145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary's main aquifer using DRASTIC and GLEAMS models.
    Leone A; Ripa MN; Uricchio V; Deák J; Vargay Z
    J Environ Manage; 2009 Jul; 90(10):2969-78. PubMed ID: 18054423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial source tracking: a forensic technique for microbial source identification?
    Stapleton CM; Wyer MD; Kay D; Crowther J; McDonald AT; Walters M; Gawler A; Hindle T
    J Environ Monit; 2007 May; 9(5):427-39. PubMed ID: 17492088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of source water pathogen contamination.
    Dechesne M; Soyeux E
    J Water Health; 2007; 5 Suppl 1():39-50. PubMed ID: 17890835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-criteria approach to Great Barrier Reef catchment (Queensland, Australia) diffuse-source pollution problem.
    Greiner R; Herr A; Brodie J; Haynes D
    Mar Pollut Bull; 2005; 51(1-4):128-37. PubMed ID: 15757715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prevalence of Cryptosporidium species in recreational versus non-recreational water sources.
    Loganthan S; Yang R; Bath A; Gordon C; Ryan U
    Exp Parasitol; 2012 Aug; 131(4):399-403. PubMed ID: 22609970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial water pollution: a screening tool for initial catchment-scale assessment and source apportionment.
    Kay D; Anthony S; Crowther J; Chambers BJ; Nicholson FA; Chadwick D; Stapleton CM; Wyer MD
    Sci Total Environ; 2010 Nov; 408(23):5649-56. PubMed ID: 19717181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of land use and watershed characteristics on protozoa contamination in a potential drinking water resources reservoir.
    Keeley A; Faulkner BR
    Water Res; 2008 May; 42(10-11):2803-13. PubMed ID: 18367230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.