BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 19515651)

  • 1. Carry-over effect of captive breeding reduces reproductive fitness of wild-born descendants in the wild.
    Araki H; Cooper B; Blouin MS
    Biol Lett; 2009 Oct; 5(5):621-4. PubMed ID: 19515651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproductive success of captive-bred steelhead trout in the wild: evaluation of three hatchery programs in the Hood river.
    Araki H; Ardren WR; Olsen E; Cooper B; Blouin MS
    Conserv Biol; 2007 Feb; 21(1):181-90. PubMed ID: 17298524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild.
    Araki H; Cooper B; Blouin MS
    Science; 2007 Oct; 318(5847):100-3. PubMed ID: 17916734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How much does inbreeding contribute to the reduced fitness of hatchery-born steelhead (Oncorhynchus mykiss) in the wild?
    Christie MR; French RA; Marine ML; Blouin MS
    J Hered; 2014; 105(1):111-9. PubMed ID: 24187426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective size of a wild salmonid population is greatly reduced by hatchery supplementation.
    Christie MR; Marine ML; French RA; Waples RS; Blouin MS
    Heredity (Edinb); 2012 Oct; 109(4):254-60. PubMed ID: 22805657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased natural reproduction and genetic diversity one generation after cessation of a steelhead trout (Oncorhynchus mykiss) conservation hatchery program.
    Berejikian BA; Van Doornik DM
    PLoS One; 2018; 13(1):e0190799. PubMed ID: 29351326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Captive Ancestry Upwardly Biases Estimates of Relative Reproductive Success.
    Willoughby JR; Christie MR
    J Hered; 2017 Jul; 108(5):583-587. PubMed ID: 28499014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between effective population size, inbreeding and adult fitness-related traits in a steelhead (Oncorhynchus mykiss) population released in the wild.
    Naish KA; Seamons TR; Dauer MB; Hauser L; Quinn TP
    Mol Ecol; 2013 Mar; 22(5):1295-309. PubMed ID: 23379933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term demographic and genetic effects of releasing captive-born individuals into the wild.
    Willoughby JR; Christie MR
    Conserv Biol; 2019 Apr; 33(2):377-388. PubMed ID: 30168872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Who are the missing parents? Grandparentage analysis identifies multiple sources of gene flow into a wild population.
    Christie MR; Marine ML; Blouin MS
    Mol Ecol; 2011 Mar; 20(6):1263-76. PubMed ID: 21244538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale parentage analysis reveals reproductive patterns and heritability of spawn timing in a hatchery population of steelhead (Oncorhynchus mykiss).
    Abadía-Cardoso A; Anderson EC; Pearse DE; Garza JC
    Mol Ecol; 2013 Sep; 22(18):4733-46. PubMed ID: 23962061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pedigree analysis reveals a generational decline in reproductive success of captive Tasmanian devil (Sarcophilus harrisii): implications for captive management of threatened species.
    Farquharson KA; Hogg CJ; Grueber CE
    J Hered; 2017 Jul; 108(5):488-495. PubMed ID: 28379457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective population size of steelhead trout: influence of variance in reproductive success, hatchery programs, and genetic compensation between life-history forms.
    Araki H; Waples RS; Ardren WR; Cooper B; Blouin MS
    Mol Ecol; 2007 Mar; 16(5):953-66. PubMed ID: 17305853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assortative mating among animals of captive and wild origin following experimental conservation releases.
    Slade B; Parrott ML; Paproth A; Magrath MJ; Gillespie GR; Jessop TS
    Biol Lett; 2014 Nov; 10(11):20140656. PubMed ID: 25411380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supportive breeding boosts natural population abundance with minimal negative impacts on fitness of a wild population of Chinook salmon.
    Hess MA; Rabe CD; Vogel JL; Stephenson JJ; Nelson DD; Narum SR
    Mol Ecol; 2012 Nov; 21(21):5236-50. PubMed ID: 23025818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Captive-bred Atlantic salmon released into the wild have fewer offspring than wild-bred fish and decrease population productivity.
    O'Sullivan RJ; Aykanat T; Johnston SE; Rogan G; Poole R; Prodöhl PA; de Eyto E; Primmer CR; McGinnity P; Reed TE
    Proc Biol Sci; 2020 Oct; 287(1937):20201671. PubMed ID: 33081620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic adaptation to captivity can occur in a single generation.
    Christie MR; Marine ML; French RA; Blouin MS
    Proc Natl Acad Sci U S A; 2012 Jan; 109(1):238-42. PubMed ID: 22184236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consequences for conservation: population density and genetic effects on reproduction of an endangered lagomorph.
    Demay SM; Becker PA; Waits LP; Johnson TR; Rachlow JL
    Ecol Appl; 2016 Apr; 26(3):784-95. PubMed ID: 27411250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The guppy as a conservation model: implications of parasitism and inbreeding for reintroduction success.
    van Oosterhout C; Smith AM; Hänfling B; Ramnarine IW; Mohammed RS; Cable J
    Conserv Biol; 2007 Dec; 21(6):1573-83. PubMed ID: 18173481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Successful captive breeding of a Malayan pangolin population to the third filial generation.
    Yan D; Zeng X; Jia M; Guo X; Deng S; Tao L; Huang X; Li B; Huang C; Que T; Li K; Liang W; Zhao Y; Liang X; Zhong Y; Platto S; Choo SW
    Commun Biol; 2021 Oct; 4(1):1212. PubMed ID: 34675353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.