BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 19515920)

  • 1. Shedding light on serpent sight: the visual pigments of henophidian snakes.
    Davies WL; Cowing JA; Bowmaker JK; Carvalho LS; Gower DJ; Hunt DM
    J Neurosci; 2009 Jun; 29(23):7519-25. PubMed ID: 19515920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple rod-cone and cone-rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression.
    Simões BF; Sampaio FL; Loew ER; Sanders KL; Fisher RN; Hart NS; Hunt DM; Partridge JC; Gower DJ
    Proc Biol Sci; 2016 Jan; 283(1823):. PubMed ID: 26817768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual Pigments, Ocular Filters and the Evolution of Snake Vision.
    Simões BF; Sampaio FL; Douglas RH; Kodandaramaiah U; Casewell NR; Harrison RA; Hart NS; Partridge JC; Hunt DM; Gower DJ
    Mol Biol Evol; 2016 Oct; 33(10):2483-95. PubMed ID: 27535583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptations and evolutionary trajectories of the snake rod and cone photoreceptors.
    Hauzman E
    Semin Cell Dev Biol; 2020 Oct; 106():86-93. PubMed ID: 32359892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual system evolution and the nature of the ancestral snake.
    Simões BF; Sampaio FL; Jared C; Antoniazzi MM; Loew ER; Bowmaker JK; Rodriguez A; Hart NS; Hunt DM; Partridge JC; Gower DJ
    J Evol Biol; 2015 Jul; 28(7):1309-20. PubMed ID: 26012745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous Expression of UV and Violet SWS1 Opsins Expands the Visual Palette in a Group of Freshwater Snakes.
    Hauzman E; Pierotti MER; Bhattacharyya N; Tashiro JH; Yovanovich CAM; Campos PF; Ventura DF; Chang BSW
    Mol Biol Evol; 2021 Dec; 38(12):5225-5240. PubMed ID: 34562092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoreceptors morphology and genetics of the visual pigments of Bothrops jararaca and Crotalus durissus terrificus (Serpentes, Viperidae).
    Bittencourt GB; Hauzman E; Bonci DMO; Ventura DF
    Vision Res; 2019 May; 158():72-77. PubMed ID: 30826356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization, tuning, and regulation of visual pigment gene expression in an anadromous lamprey.
    Davies WL; Cowing JA; Carvalho LS; Potter IC; Trezise AE; Hunt DM; Collin SP
    FASEB J; 2007 Sep; 21(11):2713-24. PubMed ID: 17463225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Daily activity patterns influence retinal morphology, signatures of selection, and spectral tuning of opsin genes in colubrid snakes.
    Hauzman E; Bonci DMO; Suárez-Villota EY; Neitz M; Ventura DF
    BMC Evol Biol; 2017 Dec; 17(1):249. PubMed ID: 29228925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of exogenous thyroid hormones on visual pigment composition in coho salmon (Oncorhynchus kisutch).
    Temple SE; Ramsden SD; Haimberger TJ; Veldhoen KM; Veldhoen NJ; Carter NL; Roth WM; Hawryshyn CW
    J Exp Biol; 2008 Jul; 211(Pt 13):2134-43. PubMed ID: 18552303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary signatures of photoreceptor transmutation in geckos reveal potential adaptation and convergence with snakes.
    Schott RK; Bhattacharyya N; Chang BSW
    Evolution; 2019 Sep; 73(9):1958-1971. PubMed ID: 31339168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
    Deeb SS; Wakefield MJ; Tada T; Marotte L; Yokoyama S; Marshall Graves JA
    Mol Biol Evol; 2003 Oct; 20(10):1642-9. PubMed ID: 12885969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cone-like rhodopsin expressed in the all-cone retina of the colubrid pine snake as a potential adaptation to diurnality.
    Bhattacharyya N; Darren B; Schott RK; Tropepe V; Chang BSW
    J Exp Biol; 2017 Jul; 220(Pt 13):2418-2425. PubMed ID: 28468872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular evolution of color vision of zebra finch.
    Yokoyama S; Blow NS; Radlwimmer FB
    Gene; 2000 Dec; 259(1-2):17-24. PubMed ID: 11163957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of spectral tuning in the dolphin visual pigments.
    Fasick JI; Robsinson PR
    Biochemistry; 1998 Jan; 37(2):433-8. PubMed ID: 9471225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of ontogeny and light environment on the expression of visual pigment opsins in the retina of the black bream, Acanthopagrus butcheri.
    Shand J; Davies WL; Thomas N; Balmer L; Cowing JA; Pointer M; Carvalho LS; Trezise AE; Collin SP; Beazley LD; Hunt DM
    J Exp Biol; 2008 May; 211(Pt 9):1495-503. PubMed ID: 18424684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake.
    Schott RK; Müller J; Yang CG; Bhattacharyya N; Chan N; Xu M; Morrow JM; Ghenu AH; Loew ER; Tropepe V; Chang BS
    Proc Natl Acad Sci U S A; 2016 Jan; 113(2):356-61. PubMed ID: 26715746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution.
    Emerling CA; Huynh HT; Nguyen MA; Meredith RW; Springer MS
    Proc Biol Sci; 2015 Nov; 282(1819):. PubMed ID: 26582021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments.
    Cowing JA; Poopalasundaram S; Wilkie SE; Robinson PR; Bowmaker JK; Hunt DM
    Biochem J; 2002 Oct; 367(Pt 1):129-35. PubMed ID: 12099889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene duplication and spectral diversification of cone visual pigments of zebrafish.
    Chinen A; Hamaoka T; Yamada Y; Kawamura S
    Genetics; 2003 Feb; 163(2):663-75. PubMed ID: 12618404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.