BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

551 related articles for article (PubMed ID: 19515998)

  • 1. CD73, a novel cell surface antigen that characterizes retinal photoreceptor precursor cells.
    Koso H; Minami C; Tabata Y; Inoue M; Sasaki E; Satoh S; Watanabe S
    Invest Ophthalmol Vis Sci; 2009 Nov; 50(11):5411-8. PubMed ID: 19515998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased integration of transplanted CD73-positive photoreceptor precursors into adult mouse retina.
    Eberle D; Schubert S; Postel K; Corbeil D; Ader M
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6462-71. PubMed ID: 21743009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of functional photoreceptor phenotype by exogenous Crx expression in mouse retinal stem cells.
    Jomary C; Jones SE
    Invest Ophthalmol Vis Sci; 2008 Jan; 49(1):429-37. PubMed ID: 18172122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of light-sensitive photoreceptor phenotypes by genetic modification of human adult ocular stem cells with Crx.
    Jomary C; Jones SE; Lotery AJ
    Invest Ophthalmol Vis Sci; 2010 Feb; 51(2):1181-9. PubMed ID: 19850845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. COUP-TFI and -TFII nuclear receptors are expressed in amacrine cells and play roles in regulating the differentiation of retinal progenitor cells.
    Inoue M; Iida A; Satoh S; Kodama T; Watanabe S
    Exp Eye Res; 2010 Jan; 90(1):49-56. PubMed ID: 19766631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leukemia inhibitory factor blocks expression of Crx and Nrl transcription factors to inhibit photoreceptor differentiation.
    Graham DR; Overbeek PA; Ash JD
    Invest Ophthalmol Vis Sci; 2005 Jul; 46(7):2601-10. PubMed ID: 15980254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of photoreceptor potential from retinal progenitor cell cultures, despite improvements in survival.
    Mansergh FC; Vawda R; Millington-Ward S; Kenna PF; Haas J; Gallagher C; Wilson JH; Humphries P; Ader M; Farrar GJ
    Exp Eye Res; 2010 Oct; 91(4):500-12. PubMed ID: 20637750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of photoreceptor-associated molecules during human fetal eye development.
    O'Brien KM; Schulte D; Hendrickson AE
    Mol Vis; 2003 Aug; 9():401-9. PubMed ID: 12949469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Downregulation of STAT3 activation is required for presumptive rod photoreceptor cells to differentiate in the postnatal retina.
    Ozawa Y; Nakao K; Shimazaki T; Takeda J; Akira S; Ishihara K; Hirano T; Oguchi Y; Okano H
    Mol Cell Neurosci; 2004 Jun; 26(2):258-70. PubMed ID: 15207851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High yield of cells committed to the photoreceptor fate from expanded mouse retinal stem cells.
    Merhi-Soussi F; Angénieux B; Canola K; Kostic C; Tekaya M; Hornfeld D; Arsenijevic Y
    Stem Cells; 2006 Sep; 24(9):2060-70. PubMed ID: 16644923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct functions of photoreceptor cell-specific nuclear receptor, thyroid hormone receptor beta2 and CRX in one photoreceptor development.
    Yanagi Y; Takezawa S; Kato S
    Invest Ophthalmol Vis Sci; 2002 Nov; 43(11):3489-94. PubMed ID: 12407160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of the postnatal rat retina in vitro: quantitative RT-PCR analyses of mRNA expression for photoreceptor proteins.
    Liljekvist-Larsson I; Törngren M; Abrahamson M; Johansson K
    Mol Vis; 2003 Dec; 9():657-64. PubMed ID: 14685147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FIZ1 is expressed during photoreceptor maturation, and synergizes with NRL and CRX at rod-specific promoters in vitro.
    Mali RS; Zhang X; Hoerauf W; Doyle D; Devitt J; Loffreda-Wren J; Mitton KP
    Exp Eye Res; 2007 Feb; 84(2):349-60. PubMed ID: 17141759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nrl is required for rod photoreceptor development.
    Mears AJ; Kondo M; Swain PK; Takada Y; Bush RA; Saunders TL; Sieving PA; Swaroop A
    Nat Genet; 2001 Dec; 29(4):447-52. PubMed ID: 11694879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transcription factor Nr2e3 functions in retinal progenitors to suppress cone cell generation.
    Haider NB; Demarco P; Nystuen AM; Huang X; Smith RS; McCall MA; Naggert JK; Nishina PM
    Vis Neurosci; 2006; 23(6):917-29. PubMed ID: 17266784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impairment of rod cGMP-gated channel alpha-subunit expression leads to photoreceptor and bipolar cell degeneration.
    Leconte L; Barnstable CJ
    Invest Ophthalmol Vis Sci; 2000 Mar; 41(3):917-26. PubMed ID: 10711714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice.
    Mitton KP; Guzman AE; Deshpande M; Byrd D; DeLooff C; Mkoyan K; Zlojutro P; Wallace A; Metcalf B; Laux K; Sotzen J; Tran T
    Mol Vis; 2014; 20():1527-44. PubMed ID: 25489226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and characterization of mr-s, a novel SAM domain protein, predominantly expressed in retinal photoreceptor cells.
    Inoue T; Terada K; Furukawa A; Koike C; Tamaki Y; Araie M; Furukawa T
    BMC Dev Biol; 2006 Mar; 6():15. PubMed ID: 16539743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delayed expression of the Crx gene and photoreceptor development in the Chx10-deficient retina.
    Rutherford AD; Dhomen N; Smith HK; Sowden JC
    Invest Ophthalmol Vis Sci; 2004 Feb; 45(2):375-84. PubMed ID: 14744875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of photoreceptor-specific nuclear receptor NR2E3 in rod photoreceptors of fetal human retina.
    Bumsted O'Brien KM; Cheng H; Jiang Y; Schulte D; Swaroop A; Hendrickson AE
    Invest Ophthalmol Vis Sci; 2004 Aug; 45(8):2807-12. PubMed ID: 15277507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.