These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 19516014)

  • 1. A quantitative ultrasonic spectroscopy method for noninvasive determination of corneal biomechanical properties.
    He X; Liu J
    Invest Ophthalmol Vis Sci; 2009 Nov; 50(11):5148-54. PubMed ID: 19516014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation of corneal acoustic and elastic properties in a canine eye model.
    He X; Liu J
    Invest Ophthalmol Vis Sci; 2011 Feb; 52(2):731-6. PubMed ID: 20926820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging.
    Tanter M; Touboul D; Gennisson JL; Bercoff J; Fink M
    IEEE Trans Med Imaging; 2009 Dec; 28(12):1881-93. PubMed ID: 19423431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of corneal tangent modulus using ultrasound indentation.
    Wang LK; Huang YP; Tian L; Kee CS; Zheng YP
    Ultrasonics; 2016 Sep; 71():20-28. PubMed ID: 27262352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vivo Noninvasive Measurement of Young's Modulus of Elasticity in Human Eyes: A Feasibility Study.
    Sit AJ; Lin SC; Kazemi A; McLaren JW; Pruet CM; Zhang X
    J Glaucoma; 2017 Nov; 26(11):967-973. PubMed ID: 28858155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlations between corneal biomechanical properties measured with the ocular response analyzer and ICare rebound tonometry.
    Jorge JM; González-Méijome JM; Queirós A; Fernandes P; Parafita MA
    J Glaucoma; 2008 Sep; 17(6):442-8. PubMed ID: 18794677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vivo Human Corneal Shear-wave Optical Coherence Elastography.
    Lan G; Aglyamov SR; Larin KV; Twa MD
    Optom Vis Sci; 2021 Jan; 98(1):58-63. PubMed ID: 33394932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic model and system for measurement of corneal biomechanical properties and validation on phantoms.
    Liu J; He X; Pan X; Roberts CJ
    J Biomech; 2007; 40(5):1177-82. PubMed ID: 16797555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography.
    Singh M; Li J; Han Z; Wu C; Aglyamov SR; Twa MD; Larin KV
    J Refract Surg; 2016 Aug; 32(8):562-7. PubMed ID: 27505317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased Biomechanical Efficacy of Corneal Cross-linking in Thin Corneas Due to Higher Oxygen Availability.
    Kling S; Richoz O; Hammer A; Tabibian D; Jacob S; Agarwal A; Hafezi F
    J Refract Surg; 2015 Dec; 31(12):840-6. PubMed ID: 26653730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of corneal elasticity with an acoustic radiation force elasticity microscope.
    Mikula E; Hollman K; Chai D; Jester JV; Juhasz T
    Ultrasound Med Biol; 2014 Jul; 40(7):1671-9. PubMed ID: 24726798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the influence of corneal biomechanical properties on intraocular pressure measurements using the ocular response analyzer.
    Medeiros FA; Weinreb RN
    J Glaucoma; 2006 Oct; 15(5):364-70. PubMed ID: 16988597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study.
    Nguyen TM; Aubry JF; Touboul D; Fink M; Gennisson JL; Bercoff J; Tanter M
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5948-54. PubMed ID: 22871840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive measurement of wave speed of porcine cornea in ex vivo porcine eyes for various intraocular pressures.
    Zhou B; Sit AJ; Zhang X
    Ultrasonics; 2017 Nov; 81():86-92. PubMed ID: 28618301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corneal resistance factor and corneal hysteresis in a 6- to 18-year-old population.
    Hashemi H; Jafarzadehpur E; Mehravaran S; Yekta A; Ostadimoghaddam H; Norouzirad R; Khabazkhoob M
    J Cataract Refract Surg; 2014 Sep; 40(9):1446-53. PubMed ID: 25135536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the ex vivo biomechanical properties of porcine cornea with inflation test for corneal xenotransplantation.
    Bao F; Jiang L; Wang X; Zhang D; Wang Q; Zeng Y
    J Med Eng Technol; 2012 Jan; 36(1):17-21. PubMed ID: 22085017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo characterization of corneal biomechanics.
    Piñero DP; Alcón N
    J Cataract Refract Surg; 2014 Jun; 40(6):870-87. PubMed ID: 24857436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of aging on corneal biomechanical parameters using the ocular response analyzer.
    Kamiya K; Shimizu K; Ohmoto F
    J Refract Surg; 2009 Oct; 25(10):888-93. PubMed ID: 19835329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corneal biomechanics measured with the ocular response analyser in patients with unilateral open-angle glaucoma.
    Hirneiss C; Neubauer AS; Yu A; Kampik A; Kernt M
    Acta Ophthalmol; 2011 Mar; 89(2):e189-92. PubMed ID: 21288308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in ocular response analyzer parameters after LASIK.
    Chen S; Chen D; Wang J; Lu F; Wang Q; Qu J
    J Refract Surg; 2010 Apr; 26(4):279-88. PubMed ID: 20415324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.