These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 19516074)

  • 1. Mutation discovery for crop improvement.
    Parry MA; Madgwick PJ; Bayon C; Tearall K; Hernandez-Lopez A; Baudo M; Rakszegi M; Hamada W; Al-Yassin A; Ouabbou H; Labhilili M; Phillips AL
    J Exp Bot; 2009; 60(10):2817-25. PubMed ID: 19516074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress in TILLING as a tool for functional genomics and improvement of crops.
    Chen L; Hao L; Parry MA; Phillips AL; Hu YG
    J Integr Plant Biol; 2014 May; 56(5):425-43. PubMed ID: 24618006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translating knowledge about abiotic stress tolerance to breeding programmes.
    Gilliham M; Able JA; Roy SJ
    Plant J; 2017 Jun; 90(5):898-917. PubMed ID: 27987327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TILLING in forage grasses for gene discovery and breeding improvement.
    Manzanares C; Yates S; Ruckle M; Nay M; Studer B
    N Biotechnol; 2016 Sep; 33(5 Pt B):594-603. PubMed ID: 26924175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops.
    Deng Y; Ning Y; Yang DL; Zhai K; Wang GL; He Z
    Mol Plant; 2020 Oct; 13(10):1402-1419. PubMed ID: 32979566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of gene targeting to designed mutation breeding of high-tryptophan rice.
    Saika H; Oikawa A; Matsuda F; Onodera H; Saito K; Toki S
    Plant Physiol; 2011 Jul; 156(3):1269-77. PubMed ID: 21543727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome editing using CRISPR/Cas9-targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses.
    Abdelrahman M; Al-Sadi AM; Pour-Aboughadareh A; Burritt DJ; Tran LP
    Plant Physiol Biochem; 2018 Oct; 131():31-36. PubMed ID: 29628199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and characterization of a new TILLING population of common bread wheat (Triticum aestivum L.).
    Chen L; Huang L; Min D; Phillips A; Wang S; Madgwick PJ; Parry MA; Hu YG
    PLoS One; 2012; 7(7):e41570. PubMed ID: 22844501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural genetic variation for improving crop quality.
    Fernie AR; Tadmor Y; Zamir D
    Curr Opin Plant Biol; 2006 Apr; 9(2):196-202. PubMed ID: 16480915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome editing of crops: A renewed opportunity for food security.
    Georges F; Ray H
    GM Crops Food; 2017 Jan; 8(1):1-12. PubMed ID: 28075688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security.
    Fiaz S; Ahmar S; Saeed S; Riaz A; Mora-Poblete F; Jung KH
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The application of genomics and bioinformatics to accelerate crop improvement in a changing climate.
    Batley J; Edwards D
    Curr Opin Plant Biol; 2016 Apr; 30():78-81. PubMed ID: 26926905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards a more predictable plant breeding pipeline with CRISPR/Cas-induced allelic series to optimize quantitative and qualitative traits.
    Scheben A; Edwards D
    Curr Opin Plant Biol; 2018 Oct; 45(Pt B):218-225. PubMed ID: 29752075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First TILLING platform in Cucurbita pepo: a new mutant resource for gene function and crop improvement.
    Vicente-Dólera N; Troadec C; Moya M; del Río-Celestino M; Pomares-Viciana T; Bendahmane A; Picó B; Román B; Gómez P
    PLoS One; 2014; 9(11):e112743. PubMed ID: 25386735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas: A powerful tool for gene function study and crop improvement.
    Zhang D; Zhang Z; Unver T; Zhang B
    J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exome sequencing and advances in crop improvement.
    Singh D; Singh PK; Chaudhary S; Mehla K; Kumar S
    Adv Genet; 2012; 79():87-121. PubMed ID: 22989766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9: a promising way to exploit genetic variation in plants.
    Rani R; Yadav P; Barbadikar KM; Baliyan N; Malhotra EV; Singh BK; Kumar A; Singh D
    Biotechnol Lett; 2016 Dec; 38(12):1991-2006. PubMed ID: 27571968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops.
    Mir RR; Zaman-Allah M; Sreenivasulu N; Trethowan R; Varshney RK
    Theor Appl Genet; 2012 Aug; 125(4):625-45. PubMed ID: 22696006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harvesting the potential of induced biological diversity.
    Waugh R; Leader DJ; McCallum N; Caldwell D
    Trends Plant Sci; 2006 Feb; 11(2):71-9. PubMed ID: 16406304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetically modified (GM) crops: milestones and new advances in crop improvement.
    Kamthan A; Chaudhuri A; Kamthan M; Datta A
    Theor Appl Genet; 2016 Sep; 129(9):1639-55. PubMed ID: 27381849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.