BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 19516360)

  • 1. Applying narrowband remote-sensing reflectance models to wideband data.
    Lee Z
    Appl Opt; 2009 Jun; 48(17):3177-83. PubMed ID: 19516360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors.
    Lee Z; Shang S; Hu C; Zibordi G
    Appl Opt; 2014 May; 53(15):3301-10. PubMed ID: 24922219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological and remote sensing perspectives of pigmentation in coral reef organisms.
    Hedley JD; Mumby PJ
    Adv Mar Biol; 2002; 43():277-317. PubMed ID: 12154614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hyperspectral model for interpretation of passive optical remote sensing data from turbid lakes.
    Kutser T; Herlevi A; Kallio K; Arst H
    Sci Total Environ; 2001 Mar; 268(1-3):47-58. PubMed ID: 11315746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effects of harmful algal bloom on bio-optical properties of coastal water].
    Wang L; Zhao DZ; Yang JH; Liu YJ; Wang X; Zou XG
    Huan Jing Ke Xue; 2011 Oct; 32(10):2855-60. PubMed ID: 22279892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of underwater visibility in coastal and inland waters using remote sensing data.
    Kulshreshtha A; Shanmugam P
    Environ Monit Assess; 2017 Apr; 189(4):199. PubMed ID: 28361489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Research of hyperspectral reconstruction based on HJ1A-CCD data].
    Guo YL; Li YM; Zhu L; Xu DQ; Li Y; Tan J; Zhou L; Liu G
    Huan Jing Ke Xue; 2013 Jan; 34(1):69-76. PubMed ID: 23487920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations.
    Wang M
    Appl Opt; 2007 Mar; 46(9):1535-47. PubMed ID: 17334446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of chlorophyll-a retrieval algorithms based on MERIS bands for optically varying eutrophic inland lakes.
    Lyu H; Li X; Wang Y; Jin Q; Cao K; Wang Q; Li Y
    Sci Total Environ; 2015 Oct; 530-531():373-382. PubMed ID: 26057542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform.
    Lee Z; Ahn YH; Mobley C; Arnone R
    Opt Express; 2010 Dec; 18(25):26313-24. PubMed ID: 21164981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote chlorophyll-a estimates for inland waters based on a cluster-based classification.
    Shi K; Li Y; Li L; Lu H; Song K; Liu Z; Xu Y; Li Z
    Sci Total Environ; 2013 Feb; 444():1-15. PubMed ID: 23262320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Hyperspectral remote sensing of total suspended matter concentrations in Lake Taihu based on water optical classification].
    Zhou XY; Sun DY; Li YM; Li JS; Gong SQ
    Huan Jing Ke Xue; 2013 Jul; 34(7):2618-27. PubMed ID: 24027991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of Primary Spectral Bands for Remote Sensing of Aquatic Environments.
    Lee Z; Carder K; Arnone R; He M
    Sensors (Basel); 2007 Dec; 7(12):3428-3441. PubMed ID: 28903303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New model for subsurface irradiance reflectance in clear and turbid waters.
    Dev PJ; Shanmugam P
    Opt Express; 2014 Apr; 22(8):9548-66. PubMed ID: 24787843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small-scale effects of underwater bubble clouds on ocean reflectance: 3-D modeling results.
    Piskozub J; Stramski D; Terrill E; Melville WK
    Opt Express; 2009 Jul; 17(14):11747-52. PubMed ID: 19582089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Hyperspectral remote sensing of chlorophyll a concentrations in the Lake Taihu, based on water optical classification].
    Sun DY; Zhou XY; Li YM; Chen XL; Huang CC; Gong SQ
    Huan Jing Ke Xue; 2013 Aug; 34(8):3002-9. PubMed ID: 24191541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optically based technique for producing merged spectra of water-leaving radiances from ocean color remote sensing.
    Mélin F; Zibordi G
    Appl Opt; 2007 Jun; 46(18):3856-69. PubMed ID: 17538684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach.
    Hubert L; Lubac B; Dessailly D; Duforet-Gaurier L; Vantrepotte V
    Opt Express; 2010 Sep; 18(20):20949-59. PubMed ID: 20940990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance.
    Wei J; Lee Z; Ondrusek M; Mannino A; Tzortziou M; Armstrong R
    J Geophys Res Oceans; 2016 Mar; 121(3):1953-1969. PubMed ID: 29201583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.