These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19516437)

  • 1. A fast and accurate numerical tool to model the modal properties of photonic-bandgap fibers.
    Dangui V; Digonnet MJ; Kino GS
    Opt Express; 2006 Apr; 14(7):2979-93. PubMed ID: 19516437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of air-guiding photonic bandgap fibers.
    Broeng J; Barkou SE; Søndergaard T; Bjarklev A
    Opt Lett; 2000 Jan; 25(2):96-8. PubMed ID: 18059794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers.
    Digonnet M; Kim H; Shin J; Fan S; Kino G
    Opt Express; 2004 May; 12(9):1864-72. PubMed ID: 19475017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of strictly bound modes in photonic crystal fibers by use of a source-model technique.
    Hochman A; Leviatan Y
    J Opt Soc Am A Opt Image Sci Vis; 2004 Jun; 21(6):1073-81. PubMed ID: 15191190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference.
    Geng Y; Li X; Tan X; Deng Y; Yu Y
    Appl Opt; 2011 Feb; 50(4):468-72. PubMed ID: 21283237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique loss characteristics in TE
    Kubota H; Kosake N; Miyoshi Y; Ohashi M
    Opt Lett; 2018 Jun; 43(11):2599-2602. PubMed ID: 29856439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers.
    Yu CP; Chang HC
    Opt Express; 2004 Dec; 12(25):6165-77. PubMed ID: 19488261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes.
    Perrin M; Quiquempois Y; Bouwmans G; Douay M
    Opt Express; 2007 Oct; 15(21):13783-95. PubMed ID: 19550649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic bandgap fibers with resonant structures for tailoring the dispersion.
    Várallyay Z; Saitoh K; Szabó A; Szipocs R
    Opt Express; 2009 Jul; 17(14):11869-83. PubMed ID: 19582101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode fibers. application to the hollow-core photonic bandgap fibers.
    Skorobogatiy M; Saitoh K; Koshiba M
    Opt Express; 2008 Sep; 16(19):14945-53. PubMed ID: 18795031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative study of the effect of cladding thickness on modal confinement loss in photonic waveguides.
    Jiang S; Lai J
    Opt Express; 2016 Oct; 24(22):24872-24882. PubMed ID: 27828428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the mode reflection coefficient in air-core photonic bandgap fibers.
    Dangui V; Digonnet MJ; Kino GS
    Opt Express; 2007 Apr; 15(9):5342-59. PubMed ID: 19532788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vectorial modal analysis of dielectric waveguides based on a coupled transverse-mode integral equation. II. Numerical analysis.
    Chang HW; Wu TL
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jun; 23(6):1478-87. PubMed ID: 16715167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of structural distortions on the performance of hollow-core photonic bandgap fibers.
    Fokoua EN; Richardson DJ; Poletti F
    Opt Express; 2014 Feb; 22(3):2735-44. PubMed ID: 24663565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement and suppression of secondary waves caused by high-order modes in a photonic bandgap fiber-optic gyroscope.
    Xu X; Gao F; Song N; Jin J
    Opt Express; 2016 May; 24(10):10246-53. PubMed ID: 27409849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers.
    Poletti F; Broderick NG; Richardson D; Monro T
    Opt Express; 2005 Oct; 13(22):9115-24. PubMed ID: 19498947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers.
    Kim HK; Digonnet M; Kino G; Shin J; Fan S
    Opt Express; 2004 Jul; 12(15):3436-42. PubMed ID: 19483869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meshed index profile method for photonic crystal fibers with arbitrary structures.
    Park KN; Lee KS
    Opt Express; 2008 Aug; 16(17):13175-87. PubMed ID: 18711556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the Verdet Constant of Polarization-Maintaining Air-Core Photonic Bandgap Fiber.
    Song N; Wang X; Xu X; Cai W; Wu C
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28817078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers.
    Amezcua-Correa R; Broderick NG; Petrovich MN; Poletti F; Richardson DJ
    Opt Express; 2006 Aug; 14(17):7974-85. PubMed ID: 19529167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.