These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 19516441)

  • 1. Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field.
    Yang S; Zhang Y; Peng X; Lu Y; Xie S; Li J; Chen W; Jiang Z; Peng J; Li H
    Opt Express; 2006 Apr; 14(7):3015-23. PubMed ID: 19516441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photonic crystal fiber for dispersion compensation.
    Zhao X; Zhou G; Li S; Liu Z; Wei D; Hou Z; Hou L
    Appl Opt; 2008 Oct; 47(28):5190-6. PubMed ID: 18830310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband dispersion-compensating photonic crystal fiber.
    Yang S; Zhang Y; He L; Xie S
    Opt Lett; 2006 Oct; 31(19):2830-2. PubMed ID: 16969392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of nonlinear photonic crystal fibers with a double-cladded coaxial core for zero chromatic dispersion.
    Kim J
    Appl Opt; 2012 Oct; 51(28):6896-900. PubMed ID: 23033108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photosensitivity-enabled dispersion controllability for quasi-phase-matching in photonic crystal fibers.
    Zhang L; Luo T; Yue Y; Yu C; Willner AE
    Opt Lett; 2007 Dec; 32(24):3498-500. PubMed ID: 18087521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber.
    Gérôme F; Auguste JL; Blondy JM
    Opt Lett; 2004 Dec; 29(23):2725-7. PubMed ID: 15605485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study on Nonlinear Spectral Properties of Photonic Crystal Fiber in Theory and Experiment].
    Zhao XT; Wang ST; Liu XX; Han Y; Zhao YY; Li SG; Hou LT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1650-5. PubMed ID: 30052365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of artificial defects for engineering large effective mode area, flat chromatic dispersion, and low leakage losses in photonic crystal fibers: Towards high speed reconfigurable transmission platforms.
    Florous N; Saitoh K; Koshiba M
    Opt Express; 2006 Jan; 14(2):901-13. PubMed ID: 19503410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses.
    Saitoh K; Florous N; Koshiba M
    Opt Express; 2005 Oct; 13(21):8365-71. PubMed ID: 19498866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation.
    Fujisawa T; Saitoh K; Wada K; Koshiba M
    Opt Express; 2006 Jan; 14(2):893-900. PubMed ID: 19503409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-effective-area dispersion-compensating fiber design based on dual-core microstructure.
    Prabhakar G; Peer A; Rastogi V; Kumar A
    Appl Opt; 2013 Jul; 52(19):4505-9. PubMed ID: 23842244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatic dispersion measurement along both polarization directions of a birefringent hollow-core photonic crystal fiber using spectral interferometry.
    Grósz T; Kovács AP; Varjú K
    Appl Opt; 2017 Jul; 56(19):5369-5376. PubMed ID: 29047493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a single-polarization single-mode photonic crystal fiber with a near-Gaussian mode field and wide bandwidth.
    Wang L; Lou S; Chen W; Li H
    Appl Opt; 2010 Nov; 49(32):6196-200. PubMed ID: 21068847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a broadband highly dispersive pure silica photonic crystal fiber.
    Subbaraman H; Ling T; Jiang Y; Chen MY; Cao P; Chen RT
    Appl Opt; 2007 Jun; 46(16):3263-8. PubMed ID: 17514284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly dispersive large mode area photonic bandgap fiber.
    Gérôme F; Février S; Pryamikov AD; Auguste JL; Jamier R; Blondy JM; Likhachev ME; Bubnov MM; Semjonov SL; Dianov EM
    Opt Lett; 2007 May; 32(10):1208-10. PubMed ID: 17440536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perturbative and phase-transition-type modification of mode field profiles and dispersion of photonic-crystal fibers by arrays of nanosize air-hole defects.
    Li YF; Hu ML; Wang CY; Zheltikov AM
    Opt Express; 2006 Oct; 14(22):10878-86. PubMed ID: 19529500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and analysis of a dispersion flattened and highly nonlinear photonic crystal fiber with ultralow confinement loss.
    Wang Y; Zhang X; Ren X; Zheng L; Liu X; Huang Y
    Appl Opt; 2010 Jan; 49(3):292-7. PubMed ID: 20090791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of highly nonlinear photonic crystal fibers with flattened chromatic dispersion.
    Li X; Xu Z; Ling W; Liu P
    Appl Opt; 2014 Oct; 53(29):6682-7. PubMed ID: 25322369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation.
    Zhang R; Teipel J; Giessen H
    Opt Express; 2006 Jul; 14(15):6800-12. PubMed ID: 19516862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion.
    Kim SE; Kim BH; Lee CG; Lee S; Oh K; Kee CS
    Opt Express; 2012 Jan; 20(2):1385-91. PubMed ID: 22274483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.