These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19516513)

  • 1. Single-beam trapping of micro-beads in polarized light: Numerical simulations.
    Zakharian AR; Polynkin P; Mansuripur M; Moloney JV
    Opt Express; 2006 Apr; 14(8):3660-76. PubMed ID: 19516513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiation pressure and the distribution of electromagnetic force in dielectric media.
    Zakharian A; Mansuripur M; Moloney J
    Opt Express; 2005 Apr; 13(7):2321-36. PubMed ID: 19495121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams.
    Kozawa Y; Sato S
    Opt Express; 2010 May; 18(10):10828-33. PubMed ID: 20588937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical concatenation of a large number of beads with a single-beam optical tweezer.
    Avila R; Ascencio-Rodríguez J; Tapia-Merino D; Rodríguez-Herrera OG; González-Suárez A
    Opt Lett; 2017 Apr; 42(7):1393-1396. PubMed ID: 28362777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-spherical particles in optical tweezers: A numerical solution.
    Herranen J; Markkanen J; Videen G; Muinonen K
    PLoS One; 2019; 14(12):e0225773. PubMed ID: 31805109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trapping of a micro-bubble by non-paraxial Gaussian beam: computation using the FDTD method.
    Sung SY; Lee YG
    Opt Express; 2008 Mar; 16(5):3463-73. PubMed ID: 18542438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical study of the properties of optical vortex array laser tweezers.
    Kuo CF; Chu SC
    Opt Express; 2013 Nov; 21(22):26418-31. PubMed ID: 24216863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient optical trapping with cylindrical vector beams.
    Moradi H; Shahabadi V; Madadi E; Karimi E; Hajizadeh F
    Opt Express; 2019 Mar; 27(5):7266-7276. PubMed ID: 30876293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructure-enhanced laser tweezers for efficient trapping and alignment of particles.
    Wilson BK; Mentele T; Bachar S; Knouf E; Bendoraite A; Tewari M; Pun SH; Lin LY
    Opt Express; 2010 Jul; 18(15):16005-13. PubMed ID: 20720985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Why single-beam optical tweezers trap gold nanowires in three dimensions.
    Yan Z; Pelton M; Vigderman L; Zubarev ER; Scherer NF
    ACS Nano; 2013 Oct; 7(10):8794-800. PubMed ID: 24041038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical trapping force and torque on spheroidal Rayleigh particles with arbitrary spatial orientations.
    Li M; Yan S; Yao B; Liang Y; Han G; Zhang P
    J Opt Soc Am A Opt Image Sci Vis; 2016 Jul; 33(7):1341-7. PubMed ID: 27409691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical Force of Bessel Pincer Light-Sheets Beam on a Dielectric Sphere of Arbitrary Size.
    Zhang S; Wei B; Wei Q; Li R; Chen S; Song N
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-accelerating self-trapped nonlinear beams of Maxwell's equations.
    Kaminer I; Nemirovsky J; Segev M
    Opt Express; 2012 Aug; 20(17):18827-35. PubMed ID: 23038522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation force of highly focused Lorentz-Gauss beams on a Rayleigh particle.
    Jiang Y; Huang K; Lu X
    Opt Express; 2011 May; 19(10):9708-13. PubMed ID: 21643228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unconventional circularly polarized Airy light-sheet spinner tweezers.
    Mitri FG
    J Opt Soc Am A Opt Image Sci Vis; 2021 Apr; 38(4):526-533. PubMed ID: 33798181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam.
    Kawauchi H; Yonezawa K; Kozawa Y; Sato S
    Opt Lett; 2007 Jul; 32(13):1839-41. PubMed ID: 17603587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical mirror from laser-trapped mesoscopic particles.
    Grzegorczyk TM; Rohner J; Fournier JM
    Phys Rev Lett; 2014 Jan; 112(2):023902. PubMed ID: 24484014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of asymmetrically dynamic motion of single colloidal particles in a polarized optical trap.
    Xie C; Dinno MA; Li YQ
    Opt Express; 2005 Mar; 13(5):1621-7. PubMed ID: 19495037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable potential well for plasmonic trapping of metallic particles by bowtie nano-apertures.
    Lu Y; Du G; Chen F; Yang Q; Bian H; Yong J; Hou X
    Sci Rep; 2016 Sep; 6():32675. PubMed ID: 27666667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.