These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 19516657)

  • 1. Analysis and optimization of channelization architecture for wideband slow light in atomic vapors.
    Dutton Z; Bashkansky M; Steiner M; Reintjes J
    Opt Express; 2006 Jun; 14(12):4978-91. PubMed ID: 19516657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Channelization-Based DOA Estimation Method for Wideband Signals.
    Guo R; Zhang Y; Lin Q; Chen Z
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27384566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow light with cavity electromagnetically induced transparency.
    Zhang J; Hernandez G; Zhu Y
    Opt Lett; 2008 Jan; 33(1):46-8. PubMed ID: 18157253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-optical tunable slow light achievement in photonic crystal coupled-cavity waveguides.
    Varmazyari V; Habibiyan H; Ghafoorifard H
    Appl Opt; 2013 Sep; 52(26):6497-505. PubMed ID: 24085125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency.
    Wang G; Lu H; Liu X
    Opt Express; 2012 Sep; 20(19):20902-7. PubMed ID: 23037214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sub-Doppler absorption narrowing in atomic vapor at two intense laser fields.
    Krmpot A; Mijailović M; Panić B; Lukić D; Kovacević A; Pantelić D; Jelenković B
    Opt Express; 2005 Mar; 13(5):1448-56. PubMed ID: 19495020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency matching in light-storage spectroscopy of atomic Raman transitions.
    Karpa L; Nikoghosyan G; Vewinger F; Fleischhauer M; Weitz M
    Phys Rev Lett; 2009 Aug; 103(9):093601. PubMed ID: 19792795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor.
    Camacho RM; Pack MV; Howell JC; Schweinsberg A; Boyd RW
    Phys Rev Lett; 2007 Apr; 98(15):153601. PubMed ID: 17501346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially dependent electromagnetically induced transparency.
    Radwell N; Clark TW; Piccirillo B; Barnett SM; Franke-Arnold S
    Phys Rev Lett; 2015 Mar; 114(12):123603. PubMed ID: 25860744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal pump profile designs for broadband SBS slow-light systems.
    Pant R; Stenner MD; Neifeld MA; Gauthier DJ
    Opt Express; 2008 Feb; 16(4):2764-77. PubMed ID: 18542360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth.
    Settle MD; Engelen RJ; Salib M; Michaeli A; Kuipers L; Krauss TF
    Opt Express; 2007 Jan; 15(1):219-26. PubMed ID: 19532237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transverse drag of slow light in moving atomic vapor.
    Solomons Y; Banerjee C; Smartsev S; Friedman J; Eger D; Firstenberg O; Davidson N
    Opt Lett; 2020 Jul; 45(13):3431-3434. PubMed ID: 32630863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing the Rydberg EIT spectrum in a thermal vapor.
    Su HJ; Liou JY; Lin IC; Chen YH
    Opt Express; 2022 Jan; 30(2):1499-1510. PubMed ID: 35209308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of coherent optical information storage in an atomic medium using halted light pulses.
    Liu C; Dutton Z; Behroozi CH; Hau LV
    Nature; 2001 Jan; 409(6819):490-3. PubMed ID: 11206540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromagnetically induced transparency with tunable single-photon pulses.
    Eisaman MD; André A; Massou F; Fleischhauer M; Zibrov AS; Lukin MD
    Nature; 2005 Dec; 438(7069):837-41. PubMed ID: 16341010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonparaxial self-accelerating beams in an atomic vapor with electromagnetically induced transparency.
    Zhong H; Zhang Y; Zhang Z; Li C; Zhang D; Zhang Y; Belić MR
    Opt Lett; 2016 Dec; 41(24):5644-5647. PubMed ID: 27973479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory of slow-light solitons.
    Rybin AV; Vadeiko IP; Bishop AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026613. PubMed ID: 16196741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherence properties of amplified slow light by four-wave mixing.
    Hsiao YF; Tsai PJ; Lin CC; Chen YF; Yu IA; Chen YC
    Opt Lett; 2014 Jun; 39(12):3394-7. PubMed ID: 24978494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intensity-dependent effects on four-wave mixing based on electromagnetically induced transparency.
    Wang G; Cen L; Qu Y; Xue Y; Wu JH; Gao JY
    Opt Express; 2011 Oct; 19(22):21614-9. PubMed ID: 22109010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Slow Light Capacity In Graphene-based Waveguide.
    Hao R; Peng XL; Li EP; Xu Y; Jin JM; Zhang XM; Chen HS
    Sci Rep; 2015 Oct; 5():15335. PubMed ID: 26478563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.