These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19516687)

  • 61. Calculated shape dependence of electromagnetic field in tip-enhanced Raman scattering by using a monopole antenna model.
    Kitahama Y; Itoh T; Suzuki T
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 197():142-147. PubMed ID: 29339023
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Polarization effects in apertureless scanning near-field optical microscopy: an experimental study.
    Aigouy L; Lahrech A; Grãsillon S; Cory H; Boccara AC; Rivoal JC
    Opt Lett; 1999 Feb; 24(4):187-9. PubMed ID: 18071449
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Simulated sample heating from a nanofocused X-ray beam.
    Wallander H; Wallentin J
    J Synchrotron Radiat; 2017 Sep; 24(Pt 5):925-933. PubMed ID: 28862614
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A simulated model for fluid and tissue heating during pediatric laser lithotripsy.
    Ellison JS; MacConaghy B; Hall TL; Roberts WW; Maxwell AD
    J Pediatr Urol; 2020 Oct; 16(5):626.e1-626.e8. PubMed ID: 32768343
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Influence of AFM Tip Temperature on THF Hydrate Stability: Theoretical Model and Numerical Simulation.
    Peng L; Ning F; Li W; Sun J; Cao P; Liu Z; Xie J
    Scanning; 2019; 2019():1694169. PubMed ID: 31741698
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Heating mechanisms in a near-field optical system.
    Kann JL; Milster TD; Froehlich FF; Ziolkowski RW; Judkins JB
    Appl Opt; 1997 Aug; 36(24):5951-8. PubMed ID: 18259436
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Plasmonic Heating in Au Nanowires at Low Temperatures: The Role of Thermal Boundary Resistance.
    Zolotavin P; Alabastri A; Nordlander P; Natelson D
    ACS Nano; 2016 Jul; 10(7):6972-9. PubMed ID: 27355238
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy.
    Leiterer C; Deckert-Gaudig T; Singh P; Wirth J; Deckert V; Fritzsche W
    Electrophoresis; 2015 May; 36(9-10):1142-8. PubMed ID: 25781418
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A finite difference thermal model of a cylindrical microwave heating applicator using locally conformal overlapping grids: part II--numerical results and experimental evaluation.
    Al-Rizzo HM; Adada R; Tranquilla JM; Ma F; Ionescu BC
    J Microw Power Electromagn Energy; 2006; 40(2):78-100. PubMed ID: 17278792
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips.
    Aeschimann L; Akiyama T; Staufer U; De Rooij NF; Thiery L; Eckert R; Heinzelmann H
    J Microsc; 2003 Mar; 209(Pt 3):182-7. PubMed ID: 12641759
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Thermal effect and morphological changes induced by Er:YAG laser with two kinds of fiber tips to enlarge the root canals.
    Lee BS; Jeng JH; Lin CP; Shoji S; Lan WH
    Photomed Laser Surg; 2004 Jun; 22(3):191-7. PubMed ID: 15315725
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Multifunctional Flexible Electromagnetic Interference Shielding Silver Nanowires/Cellulose Films with Excellent Thermal Management and Joule Heating Performances.
    Liang C; Ruan K; Zhang Y; Gu J
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):18023-18031. PubMed ID: 32208670
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Coupling efficiency of probes in emission-mode scanning near-field optical microscopy.
    Alvarez L; Xiao M
    J Microsc; 2008 Feb; 229(Pt 2):371-6. PubMed ID: 18304099
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Thermoelectric voltage at a nanometer-scale heated tip point contact.
    Fletcher PC; Lee B; King WP
    Nanotechnology; 2012 Jan; 23(3):035401. PubMed ID: 22173299
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The role of tip plasmons in near-field Raman microscopy.
    Milner RG; Richards D
    J Microsc; 2001 Apr; 202(Pt 1):66-71. PubMed ID: 11298872
    [TBL] [Abstract][Full Text] [Related]  

  • 76. High concentration bolometric system with single-walled carbon nanotubes (SWCNT) absorber.
    Andalis M; Madarang MA; Kuwahara Y; Tolentino G; Paragas RA; Triol AH; Ilasin M; Saito T; Agulo IJ
    Nanotechnology; 2020 Mar; 31(12):125202. PubMed ID: 31791028
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Scanning electrochemical microscopy. 55. Fabrication and characterization of micropipet probes.
    Walsh DA; Fernández JL; Mauzeroll J; Bard AJ
    Anal Chem; 2005 Aug; 77(16):5182-8. PubMed ID: 16097757
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Temperature measurement artefacts of thermocouples and fluoroptic probes during laser irradiation at 810 nm.
    Reid AD; Gertner MR; Sherar MD
    Phys Med Biol; 2001 Jun; 46(6):N149-57. PubMed ID: 11419634
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Flexible plasmonic modulators induced by the thermomechanical effect.
    Zou Q; Liu W; Shen Y; Jin C
    Nanoscale; 2019 Jun; 11(24):11437-11444. PubMed ID: 31184353
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of sample and substrate electric properties on the electric field enhancement at the apex of SPM nanotips.
    Notingher I; Elfick A
    J Phys Chem B; 2005 Aug; 109(33):15699-706. PubMed ID: 16852992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.