These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19516735)

  • 1. Resonant and non-resonant generation and focusing of surface plasmons with circular gratings.
    Steele JM; Liu Z; Wang Y; Zhang X
    Opt Express; 2006 Jun; 14(12):5664-70. PubMed ID: 19516735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant THz surface plasmon polariton induced by high-index dielectric metasurface.
    Lin S; Bhattarai K; Zhou J; Talbayev D
    Sci Rep; 2017 Aug; 7(1):9876. PubMed ID: 28852139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hot Electron Driven Photocatalysis on Plasmon-Resonant Grating Nanostructures.
    Wang Y; Aravind I; Cai Z; Shen L; Gibson GN; Chen J; Wang B; Shi H; Song B; Guignon E; Cady NC; Page WD; Pilar A; Cronin SB
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17459-17465. PubMed ID: 32212673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of a light-emitting diode with surface plasmon polariton or localized surface plasmon induced on surface silver gratings of different geometries.
    Yao YF; Lin CH; Chao CY; Chang WY; Su CY; Tu CG; Kiang YW; Yang CC
    Opt Express; 2018 Apr; 26(7):9205-9219. PubMed ID: 29715875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Out of plane mode conversion and manipulation of Surface Plasmon Polariton waves.
    Kumar MS; Piao X; Koo S; Yu S; Park N
    Opt Express; 2010 Apr; 18(9):8800-5. PubMed ID: 20588724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoexcited Hot Electron Catalysis in Plasmon-Resonant Grating Structures with Platinum, Nickel, and Ruthenium Coatings.
    Aravind I; Wang YY; Wang Y; Li R; Cai Z; Zhao B; Zhang B; Weng S; Shahriar R; Cronin SB
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):17393-17400. PubMed ID: 38563348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings.
    Singh BK; Hillier AC
    Anal Chem; 2008 May; 80(10):3803-10. PubMed ID: 18399660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Au Gratings Fabricated by Interference Lithography for Experimental Study of Localized and Propagating Surface Plasmons.
    Dan'ko V; Dmitruk M; Indutnyi I; Mamykin S; Myn'ko V; Shepeliavyi P; Lukaniuk M; Lytvyn P
    Nanoscale Res Lett; 2017 Dec; 12(1):190. PubMed ID: 28314356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design study for transmission improvement of resonant surface plasmons using dielectric diffraction gratings.
    Choi SH; Kim SJ; Byun KM
    Appl Opt; 2009 May; 48(15):2924-31. PubMed ID: 19458744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic nanojet: an experimental demonstration.
    Minin IV; Minin OV; Glinskiy IA; Khabibullin RA; Malureanu R; Lavrinenko AV; Yakubovsky DI; Arsenin AV; Volkov VS; Ponomarev DS
    Opt Lett; 2020 Jun; 45(12):3244-3247. PubMed ID: 32538953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of the Surface Plasmon-Polariton Resonance in a Metal Grating, as a Sensitive Element of Refractive Index Change.
    Bellucci S; Vernyhor O; Bendziak A; Yaremchuk I; Fitio VM; Bobitski Y
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32316362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flash-imprinting of intense femtosecond surface plasmons for advanced nanoantenna fabrication.
    Kuchmizhak AA; Ionin AA; Kudryashov SI; Makarov SV; Rudenko AA; Kulchin YN; Vitrik OB; Efimov TV
    Opt Lett; 2015 Apr; 40(8):1687-90. PubMed ID: 25872048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interference and resonant cavity effects explain enhanced transmission through subwavelength apertures in thin metal films.
    Flammer PD; Schick IC; Collins RT; Hollingsworth RE
    Opt Express; 2007 Jun; 15(13):7984-93. PubMed ID: 19547126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially Broadband Coupled-Surface Plasmon Wave Assisted Transmission Effect in Azo-Dye-Doped Liquid Crystal Cell.
    Dong GT; Wang CT; Hung YJ
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32664496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Higher-order surface plasmon contributions to passive and active plasmonic interferometry.
    Li D; Feng J; Pacifici D
    Opt Express; 2016 Nov; 24(24):27309-27318. PubMed ID: 27906303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-wavelength diffraction gratings for surface plasmon polaritons.
    Bezus EA; Doskolovich LL; Soifer VA
    Opt Lett; 2015 Nov; 40(21):4935-8. PubMed ID: 26512487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal.
    Hall AS; Faryad M; Barber GD; Liu L; Erten S; Mayer TS; Lakhtakia A; Mallouk TE
    ACS Nano; 2013 Jun; 7(6):4995-5007. PubMed ID: 23730702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon-coupled emission on plasmonic Bragg gratings.
    Toma M; Toma K; Adam P; Homola J; Knoll W; Dostálek J
    Opt Express; 2012 Jun; 20(13):14042-53. PubMed ID: 22714469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Highly Efficient Buried Gratings for Selective Coupling of SPP Waves onto Single Interfaces.
    Nabizada A; Tari H; Bile A; Fazio E
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance.
    Petefish JW; Hillier AC
    Anal Chem; 2014 Mar; 86(5):2610-7. PubMed ID: 24499196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.