These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 19516738)

  • 21. Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared.
    Argyros A; Pla J
    Opt Express; 2007 Jun; 15(12):7713-9. PubMed ID: 19547100
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Approximate band structure calculation for photonic bandgap fibres.
    Birks TA; Pearce GJ; Bird DM
    Opt Express; 2006 Oct; 14(20):9483-90. PubMed ID: 19529335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photonic bandgap with an index step of one percent.
    Argyros A; Birks T; Leon-Saval S; Cordeiro CM; Luan F; Russell PS
    Opt Express; 2005 Jan; 13(1):309-14. PubMed ID: 19488355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers.
    Jin L; Wang Z; Liu Y; Kai G; Dong X
    Opt Express; 2008 Dec; 16(25):21119-31. PubMed ID: 19065252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Birefringent all-solid hybrid microstructured fiber.
    Goto R; Jackson SD; Fleming S; Kuhlmey BT; Eggleton BJ; Himeno K
    Opt Express; 2008 Nov; 16(23):18752-63. PubMed ID: 19581962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission.
    Temelkuran B; Hart SD; Benoit G; Joannopoulos JD; Fink Y
    Nature; 2002 Dec; 420(6916):650-3. PubMed ID: 12478288
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupling in dual-core photonic bandgap fibers: theory and experiment.
    Wang Z; Taru T; Birks TA; Knight JC; Liu Y; Du J
    Opt Express; 2007 Apr; 15(8):4795-803. PubMed ID: 19532725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hollow multilayer photonic bandgap fibers for NIR applications.
    Kuriki K; Shapira O; Hart S; Benoit G; Kuriki Y; Viens J; Bayindir M; Joannopoulos J; Fink Y
    Opt Express; 2004 Apr; 12(8):1510-7. PubMed ID: 19474976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Higher order guided mode propagation in solid-core photonic bandgap fibers.
    Pureur V; Knight JC; Kuhlmey BT
    Opt Express; 2010 Apr; 18(9):8906-15. PubMed ID: 20588735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers.
    Noordegraaf D; Scolari L; Lægsgaard J; Rindorf L; Alkeskjold TT
    Opt Express; 2007 Jun; 15(13):7901-12. PubMed ID: 19547117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single scatterer Fano resonances in solid core photonic band gap fibers.
    Steinvurzel P; Martijn de Sterke C; Steel MJ; Kuhlmey BT; Eggleton BJ
    Opt Express; 2006 Sep; 14(19):8797-811. PubMed ID: 19529262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Avoided-crossing-based ultrasensitive photonic crystal fiber refractive index sensor.
    Han T; Liu YG; Wang Z; Zou B; Tai B; Liu B
    Opt Lett; 2010 Jun; 35(12):2061-3. PubMed ID: 20548386
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large complete bandgaps in a two-dimensional square photonic crystal with isolated single-atom dielectric rods in air.
    Yang XL; Cai LZ; Wang YR; Dong GY; Shen XX; Meng XF; Hu Y
    Nanotechnology; 2008 Jan; 19(2):025201. PubMed ID: 21817535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solid-core photonic bandgap fibers for cladding-pumped Raman amplification.
    Ward B
    Opt Express; 2011 Jun; 19(12):11852-66. PubMed ID: 21716418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Infrared switching from resonant to passive photonic bandgaps: transition from purely photonic to hybrid electronic/photonic systems.
    Sadeghi SM; Li W
    J Phys Condens Matter; 2009 Apr; 21(15):155801. PubMed ID: 21825372
    [TBL] [Abstract][Full Text] [Related]  

  • 36. All-solid microstructured fibers with double cross linear arrays.
    Guan C; Yang J; Chu R; Xu Y; Yang X; Shi J; Yuan L
    Appl Opt; 2016 Dec; 55(34):9818-9822. PubMed ID: 27958476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photonic bandgap confinement in an all-solid tellurite-glass photonic crystal fiber.
    Lousteau J; Scarpignato G; Athanasiou GS; Mura E; Boetti N; Olivero M; Benson T; Sewell P; Abrate S; Milanese D
    Opt Lett; 2012 Dec; 37(23):4922-4. PubMed ID: 23202091
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photosensitive, all-glass AgPO3/silicaphotonic bandgap fiber.
    Konidakis I; Zito G; Pissadakis S
    Opt Lett; 2012 Jul; 37(13):2499-501. PubMed ID: 22743434
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High order resonances between core mode and cladding supermodes in long period fiber gratings inscribed in photonic bandgap fibers.
    Tai B; Wang Z; Liu Y; Xu J; Liu B; Wei H; Tong W
    Opt Express; 2010 Jul; 18(15):15361-70. PubMed ID: 20720913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unique loss characteristics in TE
    Kubota H; Kosake N; Miyoshi Y; Ohashi M
    Opt Lett; 2018 Jun; 43(11):2599-2602. PubMed ID: 29856439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.