These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 19516750)

  • 1. Three-dimensional forces in GPC-based counterpropagating-beam traps.
    Rodrigo PJ; Perch-Nielsen IR; Glückstad J
    Opt Express; 2006 Jun; 14(12):5812-22. PubMed ID: 19516750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trapping forces in a multiple-beam fiber-optic trap.
    Sidick E; Collins SD; Knoesen A
    Appl Opt; 1997 Sep; 36(25):6423-33. PubMed ID: 18259500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps.
    Rodrigo PJ; Gammelgaard L; Bøggild P; Perch-Nielsen I; Glückstad J
    Opt Express; 2005 Sep; 13(18):6899-904. PubMed ID: 19498709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes.
    Perch-Nielsen I; Rodrigo P; Glückstad J
    Opt Express; 2005 Apr; 13(8):2852-7. PubMed ID: 19495180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers.
    van der Horst A; van Oostrum PD; Moroz A; van Blaaderen A; Dogterom M
    Appl Opt; 2008 Jun; 47(17):3196-202. PubMed ID: 18545293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical trapping of microrods: variation with size and refractive index.
    Simpson SH; Hanna S
    J Opt Soc Am A Opt Image Sci Vis; 2011 May; 28(5):850-8. PubMed ID: 21532697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully dynamic multiple-beam optical tweezers.
    Eriksen R; Daria V; Gluckstad J
    Opt Express; 2002 Jul; 10(14):597-602. PubMed ID: 19436404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave.
    Zemánek P; Jonás A; Liska M
    J Opt Soc Am A Opt Image Sci Vis; 2002 May; 19(5):1025-34. PubMed ID: 11999957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconfigurable millimeter-range optical binding of dielectric microparticles in hollow-core photonic crystal fiber.
    Sharma A; Xie S; Russell PSJ
    Opt Lett; 2021 Aug; 46(16):3909-3912. PubMed ID: 34388772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3-dimensional dark traps for low refractive index bio-cells using a single optical fiber Bessel beam.
    Zhang Y; Tang X; Zhang Y; Su W; Liu Z; Yang X; Zhang J; Yang J; Oh K; Yuan L
    Opt Lett; 2018 Jun; 43(12):2784-2786. PubMed ID: 29905688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-transition-like properties of double-beam optical tweezers.
    Stilgoe AB; Heckenberg NR; Nieminen TA; Rubinsztein-Dunlop H
    Phys Rev Lett; 2011 Dec; 107(24):248101. PubMed ID: 22243026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The lensing effect of trapped particles in a dual-beam optical trap.
    Grosser S; Fritsch AW; Kiessling TR; Stange R; Käs JA
    Opt Express; 2015 Feb; 23(4):5221-35. PubMed ID: 25836555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-chip optical trapping of extracellular vesicles using box-shaped composite SiO
    Loozen GB; Caro J
    Opt Express; 2018 Oct; 26(21):26985-27000. PubMed ID: 30469775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of optical forces for arbitrary light beams using the Fourier ray method.
    Shao M; Zhang S; Zhou J; Ren YX
    Opt Express; 2019 Sep; 27(20):27459-27476. PubMed ID: 31684512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional tracking of Brownian motion of a particle trapped in optical tweezers with a pair of orthogonal tracking beams and the determination of the associated optical force constants.
    Wei MT; Chiou A
    Opt Express; 2005 Jul; 13(15):5798-806. PubMed ID: 19498584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GPC-based optical micromanipulation in 3D real-time using a single spatial light modulator.
    Rodrigo PJ; Perch-Nielsen IR; Alonzo CA; Glückstad J
    Opt Express; 2006 Dec; 14(26):13107-12. PubMed ID: 19532207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FDTD simulations of forces on particles during holographic assembly.
    Benito DC; Simpson SH; Hanna S
    Opt Express; 2008 Mar; 16(5):2942-57. PubMed ID: 18542380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Position clamping in a holographic counterpropagating optical trap.
    Bowman R; Jesacher A; Thalhammer G; Gibson G; Ritsch-Marte M; Padgett M
    Opt Express; 2011 May; 19(10):9908-14. PubMed ID: 21643247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single aerosol trapping with an annular beam: improved particle localisation.
    Dear RD; Burnham DR; Summers MD; McGloin D; Ritchie GA
    Phys Chem Chem Phys; 2012 Dec; 14(45):15826-31. PubMed ID: 23089984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.