These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 19516794)
21. Verification of the lack of correlation between age and longitudinal chromatic aberrations of the human eye from the visible to the infrared. Nakajima M; Hiraoka T; Hirohara Y; Oshika T; Mihashi T Biomed Opt Express; 2015 Jul; 6(7):2676-94. PubMed ID: 26203391 [TBL] [Abstract][Full Text] [Related]
22. New intraocular lens for achromatizing the human eye. López-Gil N; Montés-Micó R J Cataract Refract Surg; 2007 Jul; 33(7):1296-302. PubMed ID: 17586390 [TBL] [Abstract][Full Text] [Related]
23. Achromatizing the human eye: the problem of chromatic parallax. Zhang XX; Bradley A; Thibos LN J Opt Soc Am A; 1991 Apr; 8(4):686-91. PubMed ID: 2045971 [TBL] [Abstract][Full Text] [Related]
24. Camera processing with chromatic aberration. Korneliussen JT; Hirakawa K IEEE Trans Image Process; 2014 Oct; 23(10):4539-52. PubMed ID: 25163060 [TBL] [Abstract][Full Text] [Related]
25. Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration. Weeber HA; Piers PA J Refract Surg; 2012 Jan; 28(1):48-52. PubMed ID: 22074466 [TBL] [Abstract][Full Text] [Related]
26. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens. Bonora S; Jian Y; Zhang P; Zam A; Pugh EN; Zawadzki RJ; Sarunic MV Opt Express; 2015 Aug; 23(17):21931-41. PubMed ID: 26368169 [TBL] [Abstract][Full Text] [Related]
28. Combined hardware and computational optical wavefront correction. South FA; Kurokawa K; Liu Z; Liu YZ; Miller DT; Boppart SA Biomed Opt Express; 2018 Jun; 9(6):2562-2574. PubMed ID: 30258673 [TBL] [Abstract][Full Text] [Related]
29. Closed-loop adaptive optics in the human eye. Fernández EJ; Iglesias I; Artal P Opt Lett; 2001 May; 26(10):746-8. PubMed ID: 18040440 [TBL] [Abstract][Full Text] [Related]
30. Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes. Zhai Y; Wang Y; Wang Z; Liu Y; Zhang L; He Y; Chang S Biomed Mater Eng; 2014; 24(6):3073-81. PubMed ID: 25227016 [TBL] [Abstract][Full Text] [Related]
31. In vivo longitudinal chromatic aberration of pseudophakic eyes. Siedlecki D; Jóźwik A; Zając M; Hill-Bator A; Turno-Kręcicka A Optom Vis Sci; 2014 Feb; 91(2):240-6. PubMed ID: 24270638 [TBL] [Abstract][Full Text] [Related]
32. Optical aberrations in the mouse eye. de la Cera EG; Rodríguez G; Llorente L; Schaeffel F; Marcos S Vision Res; 2006 Aug; 46(16):2546-53. PubMed ID: 16516259 [TBL] [Abstract][Full Text] [Related]
33. Polychromatic Image Performance of Diffractive Bifocal Intraocular Lenses: Longitudinal Chromatic Aberration and Energy Efficiency. Millán MS; Vega F; Ríos-López I Invest Ophthalmol Vis Sci; 2016 Apr; 57(4):2021-8. PubMed ID: 27100158 [TBL] [Abstract][Full Text] [Related]
34. Does the chromatic aberration of the eye vary with age? Howarth PA; Zhang XX; Bradley A; Still DL; Thibos LN J Opt Soc Am A; 1988 Dec; 5(12):2087-92. PubMed ID: 3230477 [TBL] [Abstract][Full Text] [Related]
36. Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration. Zhang X; Thibos LN; Bradley A Optom Vis Sci; 1997 Jul; 74(7):563-9. PubMed ID: 9293526 [TBL] [Abstract][Full Text] [Related]
37. The Charles F. Prentice Award Lecture 2005: optics of the human eye: progress and problems. Charman WN Optom Vis Sci; 2006 Jun; 83(6):335-45. PubMed ID: 16772891 [TBL] [Abstract][Full Text] [Related]
38. Effects of intraocular lenses with different diopters on chromatic aberrations in human eye models. Song H; Yuan X; Tang X BMC Ophthalmol; 2016 Jan; 16():9. PubMed ID: 26754111 [TBL] [Abstract][Full Text] [Related]
39. Adaptive optics in the mouse eye: wavefront sensing based vs. image-guided aberration correction. Wahl DJ; Zhang P; Mocci J; Quintavalla M; Muradore R; Jian Y; Bonora S; Sarunic MV; Zawadzki RJ Biomed Opt Express; 2019 Sep; 10(9):4757-4774. PubMed ID: 31565523 [TBL] [Abstract][Full Text] [Related]
40. Differences between wavefront and subjective refraction for infrared light. Teel DF; Jacobs RJ; Copland J; Neal DR; Thibos LN Optom Vis Sci; 2014 Oct; 91(10):1158-66. PubMed ID: 25148218 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]