These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 19516830)

  • 1. Epi-illumination through the microscope objective applied to darkfield imaging and microspectroscopy of nanoparticle interaction with cells in culture.
    Curry A; Hwang WL; Wax A
    Opt Express; 2006 Jul; 14(14):6535-42. PubMed ID: 19516830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular imaging and quantitative measurement of epidermal growth factor receptor expression in live cancer cells using immunolabeled gold nanoparticles.
    Crow MJ; Grant G; Provenzale JM; Wax A
    AJR Am J Roentgenol; 2009 Apr; 192(4):1021-8. PubMed ID: 19304709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy.
    Curry A; Nusz G; Chilkoti A; Wax A
    Opt Express; 2005 Apr; 13(7):2668-77. PubMed ID: 19495158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple method to disentangle nanoparticle optical properties by darkfield microspectroscopy.
    Gnerucci A; Ratto F; Centi S; Conti A; Pini R; Fusi F; Romano G
    Microsc Res Tech; 2014 Nov; 77(11):886-95. PubMed ID: 25066896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperspectral darkfield microscopy of single hollow gold nanoparticles for biomedical applications.
    Fairbairn N; Christofidou A; Kanaras AG; Newman TA; Muskens OL
    Phys Chem Chem Phys; 2013 Mar; 15(12):4163-8. PubMed ID: 23183927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperspectral darkfield microscopy of PEGylated gold nanoparticles targeting CD44-expressing cancer cells.
    Patskovsky S; Bergeron E; Meunier M
    J Biophotonics; 2015 Jan; 8(1-2):162-7. PubMed ID: 24343875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional real-time darkfield imaging through Fourier lightfield microscopy.
    Scrofani G; Saavedra G; Martínez-Corral M; Sánchez-Ortiga E
    Opt Express; 2020 Oct; 28(21):30513-30519. PubMed ID: 33115051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding imaging capabilities for microfluidics: applicability of darkfield internal reflection illumination (DIRI) to observations in microfluidics.
    Kawano Y; Otsuka C; Sanzo J; Higgins C; Nirei T; Schilling T; Ishikawa T
    PLoS One; 2015; 10(3):e0116925. PubMed ID: 25748425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct imaging of transmembrane dynamics of single nanoparticles with darkfield microscopy: improved orientation tracking at cell sidewall.
    Xu D; He Y; Yeung ES
    Anal Chem; 2014 Apr; 86(7):3397-404. PubMed ID: 24650046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extending Whole Slide Imaging: Color Darkfield Internal Reflection Illumination (DIRI) for Biological Applications.
    Kawano Y; Namiki K; Miyawaki A; Ishikawa T
    PLoS One; 2017; 12(1):e0167774. PubMed ID: 28085892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable bright-darkfield-contrast, a new illumination technique for improved visualizations of complex structured transparent specimens.
    Piper T; Piper J
    Microsc Res Tech; 2012 Apr; 75(4):537-54. PubMed ID: 21997977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axial Phase-Darkfield-Contrast (APDC), a new technique for variable optical contrasting in light microscopy.
    Piper T; Piper J
    J Microsc; 2012 Sep; 247(3):259-68. PubMed ID: 22906013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cost-effective side-illumination darkfield nanoplasmonic marker microscopy.
    Qi M; Darviot C; Patskovsky S; Meunier M
    Analyst; 2019 Feb; 144(4):1303-1308. PubMed ID: 30560253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quadrant darkfield (QDF) for label-free imaging of intracellular puncta.
    Moustafa TE; Belote RL; Polanco ER; Judson-Torres RL; Zangle TA
    bioRxiv; 2024 Aug; ():. PubMed ID: 39149239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibody Conjugated, Raman Tagged Hollow Gold-Silver Nanospheres for Specific Targeting and Multimodal Dark-Field/SERS/Two Photon-FLIM Imaging of CD19(+) B Lymphoblasts.
    Nagy-Simon T; Tatar AS; Craciun AM; Vulpoi A; Jurj MA; Florea A; Tomuleasa C; Berindan-Neagoe I; Astilean S; Boca S
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21155-21168. PubMed ID: 28574250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dual-mode mobile phone microscope using the onboard camera flash and ambient light.
    Orth A; Wilson ER; Thompson JG; Gibson BC
    Sci Rep; 2018 Feb; 8(1):3298. PubMed ID: 29459650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitive detection of immunogold-silver staining with darkfield and epi-polarization microscopy.
    De Waele M; Renmans W; Segers E; Jochmans K; Van Camp B
    J Histochem Cytochem; 1988 Jun; 36(6):679-83. PubMed ID: 3259250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single plasmonic nanoparticles for ultrasensitive DNA sensing: From invisible to visible.
    Guo L; Chen L; Hong S; Kim DH
    Biosens Bioelectron; 2016 May; 79():266-72. PubMed ID: 26720918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Color difference amplification between gold nanoparticles in colorimetric analysis with actively controlled multiband illumination.
    Cheng X; Dai D; Yuan Z; Peng L; He Y; Yeung ES
    Anal Chem; 2014 Aug; 86(15):7584-92. PubMed ID: 25051181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tempo-spatially resolved scattering correlation spectroscopy under dark-field illumination and its application to investigate dynamic behaviors of gold nanoparticles in live cells.
    Liu H; Dong C; Ren J
    J Am Chem Soc; 2014 Feb; 136(7):2775-85. PubMed ID: 24460214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.