These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 19516868)

  • 21. Multichannel optical communications using tunable Fabry-Perot amplifiers.
    Kazovsky L; Werner J
    Appl Opt; 1989 Feb; 28(3):553-5. PubMed ID: 20548518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bandwidth improvement for slow light using amplification characteristics of cascaded vertical-cavity surface-emitting lasers.
    Ma YN; Luo B; Yan LS; Pan W; Zou XH; Zhao JP; Li NQ; Liu XK
    Opt Lett; 2013 Feb; 38(3):308-10. PubMed ID: 23381420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. THz-bandwidth tunable slow light in semiconductor optical amplifiers.
    Sedgwick FG; Pesala B; Lin JY; Ko WS; Zhao X; Chang-Hasnain CJ
    Opt Express; 2007 Jan; 15(2):747-53. PubMed ID: 19532297
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Greatly enhanced slow and fast light in chirped pulse semiconductor optical amplifiers: theory and experiments.
    Pesala B; Sedgwick F; Uskov AV; Chang-Hasnain C
    Opt Express; 2009 Feb; 17(4):2188-97. PubMed ID: 19219122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonlinear semiconductor lasers and amplifiers for all-optical information processing.
    Adams MJ; Hurtado A; Labukhin D; Henning ID
    Chaos; 2010 Sep; 20(3):037102. PubMed ID: 20887068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrically tunable slow and fast lights in a quantum-dot semiconductor optical amplifier near 1.55 microm.
    Matsudaira A; Lee D; Kondratko P; Nielsen D; Chuang SL; Kim NJ; Oh JM; Pyun SH; Jeong WG; Jang JW
    Opt Lett; 2007 Oct; 32(19):2894-6. PubMed ID: 17909609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental implementation of spike-based neuromorphic XOR operation based on polarization-mode competition in a single VCSOA.
    Zhao S; Xiang S; Song Z; Zhang Y; Cao X; Wen A; Hao Y
    Appl Opt; 2022 Jul; 61(19):5823-5830. PubMed ID: 36255818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Brillouin assisted slow-light enhancement via Fabry-Perot cavity effects.
    Jáuregui C; Petropoulos P; Richardson DJ
    Opt Express; 2007 Apr; 15(8):5126-35. PubMed ID: 19532763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-to-short wavelength swept source.
    Johnson B; Atia W; Kuznetsov M; Goldberg BD; Whitney P; Flanders DC
    Opt Express; 2018 Dec; 26(26):34909-34918. PubMed ID: 30650907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of input chirp on phase shifters based on slow and fast light effects in semiconductor optical amplifiers.
    Xue W; Chen Y; Ohman F; Mørk J
    Opt Express; 2009 Feb; 17(3):1404-13. PubMed ID: 19188968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Top-Hat HELLISH-VCSOA for optical amplification and wavelength conversion for 0.85 to 1.3μm operation.
    Chaqmaqchee FA; Balkan N; Herrero JM
    Nanoscale Res Lett; 2012 Sep; 7(1):525. PubMed ID: 23009076
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier.
    Zhao X; Palinginis P; Pesala B; Chang-Hasnain C; Hemmer P
    Opt Express; 2005 Oct; 13(20):7899-904. PubMed ID: 19498819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tunable electromagnetically induced transparency in integrated silicon photonics circuit.
    Li A; Bogaerts W
    Opt Express; 2017 Dec; 25(25):31688-31695. PubMed ID: 29245840
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photonic microwave time delay using slow- and fast-light effects in optically injected semiconductor lasers.
    Hsieh KL; Hwang SK; Yang CL
    Opt Lett; 2017 Sep; 42(17):3307-3310. PubMed ID: 28957090
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ga0.35In0.65 N0.02As0.08/GaAs bidirectional light-emitting and light-absorbing heterojunction operating at 1.3 μm.
    Chaqmaqchee FA; Balkan N
    Nanoscale Res Lett; 2014 Jan; 9(1):37. PubMed ID: 24438583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-gain 1.3  μm GaInNAs semiconductor optical amplifier with enhanced temperature stability for all-optical signal processing at 10  Gb/s.
    Fitsios D; Giannoulis G; Korpijärvi VM; Viheriälä J; Laakso A; Iliadis N; Dris S; Spyropoulou M; Avramopoulos H; Kanellos GT; Pleros N; Guina M
    Appl Opt; 2015 Jan; 54(1):46-52. PubMed ID: 25967005
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polarization dependence of non-linear gain compression factor in semiconductor optical amplifier.
    Philippe S; Bradley AL; Maldonado-Basilio R; Surre F; Kennedy BF; Landais P; Soto-Ortiz H
    Opt Express; 2008 Jun; 16(12):8641-8. PubMed ID: 18545577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering.
    Dahan D; Eisenstein G
    Opt Express; 2005 Aug; 13(16):6234-49. PubMed ID: 19498636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. External cavity multiwavelength semiconductor mode-locked lasers gain dynamics.
    Archundia-Berra LC; Delfyett PJ
    Opt Express; 2006 Oct; 14(20):9223-37. PubMed ID: 19529304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intermodulation distortion in microwave phase shifters based on slow and fast light propagation in semiconductor optical amplifiers.
    Berger P; Bourderionnet J; Bretenaker F; Dolfi D; Dúill SO; Eisenstein G; Alouini M
    Opt Lett; 2010 Aug; 35(16):2762-4. PubMed ID: 20717449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.