BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 1951710)

  • 21. Adenosine mediates decreased cerebral metabolic rate and increased cerebral blood flow during acute moderate hypoxia in the near-term fetal sheep.
    Blood AB; Hunter CJ; Power GG
    J Physiol; 2003 Dec; 553(Pt 3):935-45. PubMed ID: 14500776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human renal response to furosemide: Simultaneous oxygenation and perfusion measurements in cortex and medulla.
    Haddock B; Larsson HBW; Francis S; Andersen UB
    Acta Physiol (Oxf); 2019 Sep; 227(1):e13292. PubMed ID: 31046189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxygen-dependent inhibition of respiration in isolated renal tubules by nitric oxide.
    Koivisto A; Pittner J; Froelich M; Persson AE
    Kidney Int; 1999 Jun; 55(6):2368-75. PubMed ID: 10354284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of metabolic CO2 production in the generation of elevated renal cortical PCO2.
    DuBose TD; Caflisch CR; Bidani A
    Am J Physiol; 1984 May; 246(5 Pt 2):F592-9. PubMed ID: 6426323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determinations of renal cortical and medullary oxygenation using blood oxygen level-dependent magnetic resonance imaging and selective diuretics.
    Warner L; Glockner JF; Woollard J; Textor SC; Romero JC; Lerman LO
    Invest Radiol; 2011 Jan; 46(1):41-7. PubMed ID: 20856128
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Renal hemodynamic responses to intrarenal infusion of acetylcholine: comparison with effects of PGE2 and NO donor.
    Badzyńska B; Sadowski J
    Kidney Int; 2006 May; 69(10):1774-9. PubMed ID: 16572111
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Renal cortical oxygen tension is decreased following exposure to long-term but not short-term intermittent hypoxia in the rat.
    O'Neill J; Jasionek G; Drummond SE; Brett O; Lucking EF; Abdulla MA; O'Halloran KD
    Am J Physiol Renal Physiol; 2019 Apr; 316(4):F635-F645. PubMed ID: 30648908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tissue oxygen and hemodynamics in renal medulla, cortex, and corticomedullary junction during hemorrhage-reperfusion.
    Whitehouse T; Stotz M; Taylor V; Stidwill R; Singer M
    Am J Physiol Renal Physiol; 2006 Sep; 291(3):F647-53. PubMed ID: 16525156
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endotoxin-induced changes in intrarenal pO2, measured by in vivo electron paramagnetic resonance oximetry and magnetic resonance imaging.
    James PE; Bacic G; Grinberg OY; Goda F; Dunn JF; Jackson SK; Swartz HM
    Free Radic Biol Med; 1996; 21(1):25-34. PubMed ID: 8791090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antagonistic effect of theophylline on the adenosine-induced decreased in renin release.
    Spielman WS
    Am J Physiol; 1984 Aug; 247(2 Pt 2):F246-51. PubMed ID: 6087679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-dose candesartan improves renal blood flow and kidney oxygen tension in rats with endotoxin-induced acute kidney dysfunction.
    Nitescu N; Grimberg E; Guron G
    Shock; 2008 Aug; 30(2):166-72. PubMed ID: 18091574
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual-wavelength phosphorimetry for determination of cortical and subcortical microvascular oxygenation in rat kidney.
    Johannes T; Mik EG; Ince C
    J Appl Physiol (1985); 2006 Apr; 100(4):1301-10. PubMed ID: 16357065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increased kidney metabolism as a pathway to kidney tissue hypoxia and damage: effects of triiodothyronine and dinitrophenol in normoglycemic rats.
    Friederich-Persson M; Persson P; Fasching A; Hansell P; Nordquist L; Palm F
    Adv Exp Med Biol; 2013; 789():9-14. PubMed ID: 23852470
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intrarenal oxygen tension measured by a modified clark electrode at normal and low blood pressure and after injection of x-ray contrast media.
    Liss P; Nygren A; Revsbech NP; Ulfendahl HR
    Pflugers Arch; 1997 Nov; 434(6):705-11. PubMed ID: 9306002
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of contrast media on renal microcirculation and oxygen tension. An experimental study in the rat.
    Liss P
    Acta Radiol Suppl; 1997; 409():1-29. PubMed ID: 9100489
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disparate roles of AT2 receptors in the renal cortical and medullary circulations of anesthetized rabbits.
    Duke LM; Eppel GA; Widdop RE; Evans RG
    Hypertension; 2003 Aug; 42(2):200-5. PubMed ID: 12847115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension.
    Palm F; Cederberg J; Hansell P; Liss P; Carlsson PO
    Diabetologia; 2003 Aug; 46(8):1153-60. PubMed ID: 12879251
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of iothalamate on renal medullary perfusion and oxygenation in the rat.
    Liss P; Aukland K; Carlsson PO; Palm F; Hansell P
    Acta Radiol; 2005 Dec; 46(8):823-9. PubMed ID: 16392607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of exogenous angiotensin II on renal tissue nitric oxide and intrarenal circulation in anaesthetized rats.
    Badzyńska B; Grzelec-Mojzesowicz M; Sadowski J
    Acta Physiol Scand; 2004 Nov; 182(3):313-8. PubMed ID: 15491410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.