These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19517422)

  • 1. Plasmonic nanoprobes for SERS biosensing and bioimaging.
    Vo-Dinh T; Wang HN; Scaffidi J
    J Biophotonics; 2010 Jan; 3(1-2):89-102. PubMed ID: 19517422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Nanoprobes for in Vivo Multimodal Sensing and Bioimaging of MicroRNA within Plants.
    Crawford BM; Strobbia P; Wang HN; Zentella R; Boyanov MI; Pei ZM; Sun TP; Kemner KM; Vo-Dinh T
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):7743-7754. PubMed ID: 30694650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic coupling interference (PCI) nanoprobes for nucleic acid detection.
    Wang HN; Vo-Dinh T
    Small; 2011 Nov; 7(21):3067-74. PubMed ID: 21913327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-enhanced Raman scattering molecular sentinel nanoprobes for viral infection diagnostics.
    Wang HN; Fales AM; Zaas AK; Woods CW; Burke T; Ginsburg GS; Vo-Dinh T
    Anal Chim Acta; 2013 Jul; 786():153-8. PubMed ID: 23790305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonics meets super-resolution microscopy in biology.
    Wang M; Li M; Jiang S; Gao J; Xi P
    Micron; 2020 Oct; 137():102916. PubMed ID: 32688264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advancements in optical DNA biosensors: exploiting the plasmonic effects of metal nanoparticles.
    Peng HI; Miller BL
    Analyst; 2011 Feb; 136(3):436-47. PubMed ID: 21049107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-tailored plasmonic nanoparticles for biosensing applications.
    Lee JH; Hwang JH; Nam JM
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(1):96-109. PubMed ID: 22927287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable silver/biopolymer hybrid plasmonic nanostructures for high performance surface enhanced Raman scattering (SERS).
    Sundaram J; Park B; Kwon Y
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5382-90. PubMed ID: 23882767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled biohybrid nanoprobes with silver nanoparticle clusters for Raman imaging.
    Jalani G; Lee S; Jung CW; Jang H; Choo J; Lim DW
    Analyst; 2013 Sep; 138(17):4756-9. PubMed ID: 23869383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic nanoprobes: from chemical sensing to medical diagnostics and therapy.
    Vo-Dinh T; Fales AM; Griffin GD; Khoury CG; Liu Y; Ngo H; Norton SJ; Register JK; Wang HN; Yuan H
    Nanoscale; 2013 Nov; 5(21):10127-40. PubMed ID: 24056945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanobiosensing Using Plasmonic Nanoprobes.
    Vo-Dinh T
    IEEE J Sel Top Quantum Electron; 2008 Jan; 14(1):198-205. PubMed ID: 24839386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene oxide and gold nanoparticle based dual platform with short DNA probe for the PCR free DNA biosensing using surface-enhanced Raman scattering.
    Khalil I; Yehye WA; Julkapli NM; Rahmati S; Sina AA; Basirun WJ; Johan MR
    Biosens Bioelectron; 2019 Apr; 131():214-223. PubMed ID: 30844598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonics nanoprobes: detection of single-nucleotide polymorphisms in the breast cancer BRCA1 gene.
    Wabuyele MB; Yan F; Vo-Dinh T
    Anal Bioanal Chem; 2010 Sep; 398(2):729-36. PubMed ID: 20676618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indirect surface-enhanced Raman scattering assay of insulin-like growth factor 2 receptor protein by combining the aptamer modified gold substrate and silver nanoprobes.
    Liu Y; Tian H; Chen X; Liu W; Xia K; Huang J; de la Chapelle ML; Huang G; Zhang Y; Fu W
    Mikrochim Acta; 2020 Feb; 187(3):160. PubMed ID: 32040773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplex micro-SERS imaging of cancer-related markers in cells and tissues using poly(allylamine)-coated Au@Ag nanoprobes.
    Verdin A; Malherbe C; Müller WH; Bertrand V; Eppe G
    Anal Bioanal Chem; 2020 Nov; 412(28):7739-7755. PubMed ID: 32910264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct and Label-Free Detection of MicroRNA Cancer Biomarkers using SERS-Based Plasmonic Coupling Interference (PCI) Nanoprobes.
    Wang HN; Crawford BM; Norton SJ; Vo-Dinh T
    J Phys Chem B; 2019 Dec; 123(48):10245-10251. PubMed ID: 31710234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinguishing cancer cell lines at a single living cell level via detection of sialic acid by dual-channel plasmonic imaging and by using a SERS-microfluidic droplet platform.
    Cong L; Liang L; Cao F; Sun D; Yue J; Xu W; Liang C; Xu S
    Mikrochim Acta; 2019 May; 186(6):367. PubMed ID: 31115772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monodisperse Au@Ag core-shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells.
    Chang J; Zhang A; Huang Z; Chen Y; Zhang Q; Cui D
    Talanta; 2019 Jun; 198():45-54. PubMed ID: 30876586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-enhanced Raman scattering imaging using noble metal nanoparticles.
    Wilson AJ; Willets KA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):180-9. PubMed ID: 23335562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individual Plasmonic Nanoprobes for Biosensing and Bioimaging: Recent Advances and Perspectives.
    Ma J; Wang X; Feng J; Huang C; Fan Z
    Small; 2021 Feb; 17(8):e2004287. PubMed ID: 33522074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.