These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
481 related articles for article (PubMed ID: 19518054)
1. Characterization of protein impurities and site-specific modifications using peptide mapping with liquid chromatography and data independent acquisition mass spectrometry. Xie H; Gilar M; Gebler JC Anal Chem; 2009 Jul; 81(14):5699-708. PubMed ID: 19518054 [TBL] [Abstract][Full Text] [Related]
2. Use of an integrated MS--multiplexed MS/MS data acquisition strategy for high-coverage peptide mapping studies. Chakraborty AB; Berger SJ; Gebler JC Rapid Commun Mass Spectrom; 2007; 21(5):730-44. PubMed ID: 17279597 [TBL] [Abstract][Full Text] [Related]
3. The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Geromanos SJ; Vissers JP; Silva JC; Dorschel CA; Li GZ; Gorenstein MV; Bateman RH; Langridge JI Proteomics; 2009 Mar; 9(6):1683-95. PubMed ID: 19294628 [TBL] [Abstract][Full Text] [Related]
4. Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase. Seo J; Jeong J; Kim YM; Hwang N; Paek E; Lee KJ J Proteome Res; 2008 Feb; 7(2):587-602. PubMed ID: 18183946 [TBL] [Abstract][Full Text] [Related]
5. Characterization of glycosylation sites for a recombinant IgG1 monoclonal antibody and a CTLA4-Ig fusion protein by liquid chromatography-mass spectrometry peptide mapping. Bongers J; Devincentis J; Fu J; Huang P; Kirkley DH; Leister K; Liu P; Ludwig R; Rumney K; Tao L; Wu W; Russell RJ J Chromatogr A; 2011 Nov; 1218(45):8140-9. PubMed ID: 21978954 [TBL] [Abstract][Full Text] [Related]
6. Validation of peptide mapping with electrospray mass spectrometry for recombinant proteins of biopharmaceutical interest and its applications as an identity test and a characterization tool. Wei Z; Tous G; Yim A; Hope JN; Casas-Finet JR; Folena-Wasserman G; Schenerman MA Dev Biol (Basel); 2005; 122():29-47. PubMed ID: 16375249 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of enzymatic digestion and liquid chromatography-mass spectrometry peptide mapping of the integral membrane protein bacteriorhodopsin. Hixson KK; Rodriguez N; Camp DG; Strittmatter EF; Lipton MS; Smith RD Electrophoresis; 2002 Sep; 23(18):3224-32. PubMed ID: 12298094 [TBL] [Abstract][Full Text] [Related]
8. Protein identification by peptide mass fingerprinting and peptide sequence tagging with alternating scans of nano-liquid chromatography/infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometry. Kosaka T; Yoneyama-Takazawa T; Kubota K; Matsuoka T; Sato I; Sasaki T; Tanaka Y J Mass Spectrom; 2003 Dec; 38(12):1281-7. PubMed ID: 14696210 [TBL] [Abstract][Full Text] [Related]
9. Mapping site-specific protein N-glycosylations through liquid chromatography/mass spectrometry and targeted tandem mass spectrometry. Wu Y; Mechref Y; Klouckova I; Mayampurath A; Novotny MV; Tang H Rapid Commun Mass Spectrom; 2010 Apr; 24(7):965-72. PubMed ID: 20209665 [TBL] [Abstract][Full Text] [Related]
10. Method to site-specifically identify and quantitate carbonyl end products of protein oxidation using oxidation-dependent element coded affinity tags (O-ECAT) and nanoliquid chromatography Fourier transform mass spectrometry. Lee S; Young NL; Whetstone PA; Cheal SM; Benner WH; Lebrilla CB; Meares CF J Proteome Res; 2006 Mar; 5(3):539-47. PubMed ID: 16512668 [TBL] [Abstract][Full Text] [Related]
11. Mapping posttranslational modifications of proteins by MS-based selective detection: application to phosphoproteomics. Carr SA; Annan RS; Huddleston MJ Methods Enzymol; 2005; 405():82-115. PubMed ID: 16413312 [TBL] [Abstract][Full Text] [Related]
12. Analysis of monoclonal antibody product heterogeneity resulting from alternate cleavage sites of signal peptide. Kotia RB; Raghani AR Anal Biochem; 2010 Apr; 399(2):190-5. PubMed ID: 20074542 [TBL] [Abstract][Full Text] [Related]
13. Optimization of apolipoprotein-B-100 sequence coverage by liquid chromatography-tandem mass spectrometry for the future study of its posttranslational modifications. Delporte C; Van Antwerpen P; Zouaoui Boudjeltia K; Noyon C; Abts F; Métral F; Vanhamme L; Reyé F; Rousseau A; Vanhaeverbeek M; Ducobu J; Nève J Anal Biochem; 2011 Apr; 411(1):129-38. PubMed ID: 21129357 [TBL] [Abstract][Full Text] [Related]
14. Automated mass correction and data interpretation for protein open-access liquid chromatography-mass spectrometry. Wagner CD; Hall JT; White WL; Miller LA; Williams JD J Mass Spectrom; 2007 Feb; 42(2):139-49. PubMed ID: 17221927 [TBL] [Abstract][Full Text] [Related]
16. Identification of human liver diacetyl reductases by nano-liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry. Tanaka Y; Sato I; Iwai C; Kosaka T; Ikeda T; Nakamura T Anal Biochem; 2001 Jun; 293(2):157-68. PubMed ID: 11399028 [TBL] [Abstract][Full Text] [Related]
17. A modified peptide mapping strategy for quantifying site-specific deamidation by electrospray time-of-flight mass spectrometry. Stroop SD Rapid Commun Mass Spectrom; 2007; 21(6):830-6. PubMed ID: 17294517 [TBL] [Abstract][Full Text] [Related]
18. Large-scale identification and quantification of covalent modifications in therapeutic proteins. Zhang Z Anal Chem; 2009 Oct; 81(20):8354-64. PubMed ID: 19764700 [TBL] [Abstract][Full Text] [Related]
19. Functional region identification in proteins by accumulative-quantitative peptide mapping using RP-HPLC-MS. Kuipers BJ; Bakx EJ; Gruppen H J Agric Food Chem; 2007 Nov; 55(23):9337-44. PubMed ID: 17944536 [TBL] [Abstract][Full Text] [Related]
20. Applications of mass spectrometry for the structural characterization of recombinant protein pharmaceuticals. Srebalus Barnes CA; Lim A Mass Spectrom Rev; 2007; 26(3):370-88. PubMed ID: 17410555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]