BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 19518082)

  • 1. Direct electron transfer and enhanced electrocatalytic activity of hemoglobin at iron-rich clay modified electrodes.
    Charradi K; Forano C; Prevot V; Ben Haj Amara A; Mousty C
    Langmuir; 2009 Sep; 25(17):10376-83. PubMed ID: 19518082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct electron transfer and bioelectrocatalysis of hemoglobin on nano-structural attapulgite clay-modified glassy carbon electrode.
    Xu J; Li W; Yin Q; Zhong H; Zhu Y; Jin L
    J Colloid Interface Sci; 2007 Nov; 315(1):170-6. PubMed ID: 17681509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core--shell nanocluster films of hemoglobin and clay nanoparticle: direct electrochemistry and electrocatalysis.
    Liu Y; Liu H; Hu N
    Biophys Chem; 2005 Aug; 117(1):27-37. PubMed ID: 15905021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: direct voltammetry and electrocatalytic activity.
    Salimi A; Hallaj R; Soltanian S
    Biophys Chem; 2007 Nov; 130(3):122-31. PubMed ID: 17825977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct electron transfer of hemoglobin in layered alpha-zirconium phosphate with a high thermal stability.
    Liu Y; Lu C; Hou W; Zhu JJ
    Anal Biochem; 2008 Apr; 375(1):27-34. PubMed ID: 18211815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct electron transfer and electrocatalysis of hemoglobin adsorbed on mesoporous carbon through layer-by-layer assembly.
    Feng JJ; Xu JJ; Chen HY
    Biosens Bioelectron; 2007 Mar; 22(8):1618-24. PubMed ID: 16919440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembled films of hemoglobin/laponite/chitosan: application for the direct electrochemistry and catalysis to hydrogen peroxide.
    Shan D; Han E; Xue H; Cosnier S
    Biomacromolecules; 2007 Oct; 8(10):3041-6. PubMed ID: 17824641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemistry and electrocatalytic properties of hemoglobin in layer-by-layer films of SiO2 with vapor-surface sol-gel deposition.
    Shi G; Sun Z; Liu M; Zhang L; Liu Y; Qu Y; Jin L
    Anal Chem; 2007 May; 79(10):3581-8. PubMed ID: 17437331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerated direct electrochemistry of hemoglobin based on hemoglobin-carbon nanotube (Hb-CNT) assembly.
    Zhang R; Wang X; Shiu KK
    J Colloid Interface Sci; 2007 Dec; 316(2):517-22. PubMed ID: 17904150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical investigation of immobilized hemoglobin: redox chemistry and enzymatic catalysis.
    Liu HH; Zou GL
    J Biochem Biophys Methods; 2006 Aug; 68(2):87-99. PubMed ID: 16762418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct electrochemistry and electrocatalysis of hemoglobin on undoped nanocrystalline diamond modified glassy carbon electrode.
    Zhu JT; Shi CG; Xu JJ; Chen HY
    Bioelectrochemistry; 2007 Nov; 71(2):243-8. PubMed ID: 17702670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical study of photovoltaic effect of nano titanium dioxide on hemoglobin.
    Zhou H; Gan X; Liu T; Yang Q; Li G
    Bioelectrochemistry; 2006 Sep; 69(1):34-40. PubMed ID: 16386965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on direct electron transfer and biocatalytic properties of heme proteins in lecithin film.
    Lu Q; Chen X; Wu Y; Hu S
    Biophys Chem; 2005 Aug; 117(1):55-63. PubMed ID: 15907360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct electrochemistry and electrocatalysis of hemoglobin entrapped in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan.
    Zeng X; Wei W; Li X; Zeng J; Wu L
    Bioelectrochemistry; 2007 Nov; 71(2):135-41. PubMed ID: 17398166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of hemoglobin on the gold colloid modified pretreated glassy carbon electrode for preparing a novel hydrogen peroxide biosensor.
    Liu Y; Jiang QY; Lu SY; Zhang Y; Gu HY
    Appl Biochem Biotechnol; 2009 Mar; 152(3):418-27. PubMed ID: 18758695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemistry and electrocatalysis of hemoglobin in Nafion/nano-CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode.
    Sun W; Gao R; Jiao K
    J Phys Chem B; 2007 May; 111(17):4560-7. PubMed ID: 17425353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on direct electron transfer and biocatalytic properties of hemoglobin in polyacrylonitrile matrix.
    Shan D; Wang S; Zhu D; Xue H
    Bioelectrochemistry; 2007 Nov; 71(2):198-203. PubMed ID: 17569598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron transfer of hemoglobin at electrodes modified with colloidal clay nanoparticles.
    Lei C; Wollenberger U; Bistolas N; Guiseppi-Elie A; Scheller FW
    Anal Bioanal Chem; 2002 Jan; 372(2):235-9. PubMed ID: 11936092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron paramagnetic resonance, scanning electron microscopy with energy dispersion X-ray spectrometry, X-ray powder diffraction, and NMR characterization of iron-rich fired clays.
    Presciutti F; Capitani D; Sgamellotti A; Brunetti BG; Costantino F; Viel S; Segre A
    J Phys Chem B; 2005 Dec; 109(47):22147-58. PubMed ID: 16853882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-chain surfactant monolayer on carbon paste electrode and its application for the studies on the direct electron transfer of hemoglobin.
    Xu Y; Hu C; Hu S
    Bioelectrochemistry; 2009 Feb; 74(2):254-9. PubMed ID: 18938113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.