These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 19518360)

  • 1. Stark broadening of hydrogen lines in low-density magnetized plasmas.
    Rosato J; Marandet Y; Capes H; Ferri S; Mossé C; Godbert-Mouret L; Koubiti M; Stamm R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046408. PubMed ID: 19518360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stark broadening of high principal quantum number hydrogen Balmer lines in low-density laboratory plasmas.
    Stambulchik E; Alexiou S; Griem HR; Kepple PC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016401. PubMed ID: 17358262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A non-statistical atomic model for beam emission and motional Stark effect diagnostics in fusion plasmas.
    Ralchenko Y; Marchuk O; Biel W; Schlummer T; Schultz DR; Stambulchik E
    Rev Sci Instrum; 2012 Oct; 83(10):10D504. PubMed ID: 23126848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a spectroscopic technique for simultaneous magnetic field, electron density, and temperature measurements in ICF-relevant plasmas.
    Dutra EC; Koch JA; Presura R; Angermeier WA; Darling T; Haque S; Mancini RC; Covington AM
    Rev Sci Instrum; 2016 Nov; 87(11):11E558. PubMed ID: 27910373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex atomic spectral line shapes in the presence of an external magnetic field.
    Adams ML; Lee RW; Scott HA; Chung HK; Klein L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066413. PubMed ID: 12513418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Stark broadening as the Dicke narrowing effect.
    Calisti A; Mossé C; Ferri S; Talin B; Rosmej F; Bureyeva LA; Lisitsa VS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016406. PubMed ID: 20365484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stark broadening of hydrogen lines in dense plasmas: analysis of recent experiments.
    Alexiou S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066403. PubMed ID: 16089876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collisional redistribution of hydrogen line radiation in low- and moderate-density magnetized plasmas.
    Rosato J
    Phys Rev E; 2021 May; 103(5-1):053209. PubMed ID: 34134246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advance in diagnostics for high-temperature plasmas based on the analytical result for the ion dynamical broadening of hydrogen spectral lines.
    Oks E
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):R2480-3. PubMed ID: 11970181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared spectroscopy for divertor plasma diagnosis and control in DIII-D tokamak.
    Soukhanovskii VA; McLean AG; Allen SL
    Rev Sci Instrum; 2014 Nov; 85(11):11E418. PubMed ID: 25430325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stark broadening corrections to laser-induced fluorescence temperature measurements in a hydrogen arcjet plume.
    Storm PV; Cappelli MA
    Appl Opt; 1996 Aug; 35(24):4913-8. PubMed ID: 21102917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Number-conserving linear-response study of low-velocity ion stopping in a collisional magnetized classical plasma.
    Nersisyan HB; Deutsch C; Das AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036403. PubMed ID: 21517600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diagnosing ions and neutrals via n=2 excited hydrogen atoms in plasmas with high electron density and low electron temperature.
    Shumack AE; Schram DC; Biesheuvel J; Goedheer WJ; van Rooij GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036402. PubMed ID: 21517599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory for large-amplitude electrostatic ion shocks in quantum plasmas.
    Akbari-Moghanjoughi M; Shukla PK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066401. PubMed ID: 23368053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wake effect and stopping power for a charged ion moving in magnetized two-component plasmas: two-dimensional particle-in-cell simulation.
    Hu ZH; Song YH; Wang YN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026404. PubMed ID: 20866923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Standard line broadening impact theory for hydrogen including penetrating collisions.
    Alexiou S; Poquérusse A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046404. PubMed ID: 16383542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gigagauss magnetic field measurements using Zeeman broadening of Ne-like transitions in highly charged ions.
    Seely JF
    Rev Sci Instrum; 2021 May; 92(5):053535. PubMed ID: 34243271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic polarization and energy dissipation for charged particles moving in magnetized two-component plasmas.
    Hu ZH; Song YH; Wang YN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016405. PubMed ID: 19257146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High resolution magnetic field measurements in hydrogen and helium plasmas using active laser spectroscopy.
    Zafar A; Martin E; Shannon S
    Rev Sci Instrum; 2018 Oct; 89(10):10D126. PubMed ID: 30399737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coulomb crystals in the magnetic field.
    Baiko DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046405. PubMed ID: 19905459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.