These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Stability of attractors formed by inertial particles in open chaotic flows. Do Y; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036203. PubMed ID: 15524608 [TBL] [Abstract][Full Text] [Related]
8. Fractal dimension in dissipative chaotic scattering. Seoane JM; Sanjuán MA; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016208. PubMed ID: 17677544 [TBL] [Abstract][Full Text] [Related]
9. Cusp-scaling behavior in fractal dimension of chaotic scattering. Motter AE; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):065201. PubMed ID: 12188774 [TBL] [Abstract][Full Text] [Related]
10. Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics. Olivares F; Zunino L; Soriano MC; Pérez DG Phys Rev E; 2019 Oct; 100(4-1):042215. PubMed ID: 31770914 [TBL] [Abstract][Full Text] [Related]
11. Relationship between scattered intensity and separation for particles in an evanescent field. McKee CT; Clark SC; Walz JY; Ducker WA Langmuir; 2005 Jun; 21(13):5783-9. PubMed ID: 15952823 [TBL] [Abstract][Full Text] [Related]
12. Scaling laws for noise-induced super-persistent chaotic transients. Do Y; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046208. PubMed ID: 15903771 [TBL] [Abstract][Full Text] [Related]
13. Quasipotential approach to critical scaling in noise-induced chaos. Tél T; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056208. PubMed ID: 20866308 [TBL] [Abstract][Full Text] [Related]
14. Effect of common noise on phase synchronization in coupled chaotic oscillators. Park K; Lai YC; Krishnamoorthy S; Kandangath A Chaos; 2007 Mar; 17(1):013105. PubMed ID: 17411241 [TBL] [Abstract][Full Text] [Related]
15. Scaling investigation for the dynamics of charged particles in an electric field accelerator. Gouve A Ladeira D; Leonel ED Chaos; 2012 Dec; 22(4):043148. PubMed ID: 23278083 [TBL] [Abstract][Full Text] [Related]
16. Scattering a pulse from a chaotic cavity: transitioning from algebraic to exponential decay. Hart JA; Antonsen TM; Ott E Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016208. PubMed ID: 19257123 [TBL] [Abstract][Full Text] [Related]
17. Random fluctuation leads to forbidden escape of particles. Rodrigues CS; de Moura AP; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026211. PubMed ID: 20866897 [TBL] [Abstract][Full Text] [Related]
18. Origin of the exponential decay of the Loschmidt echo in integrable systems. Dubertrand R; Goussev A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022915. PubMed ID: 25353553 [TBL] [Abstract][Full Text] [Related]
19. Characterization of noise-induced strange nonchaotic attractors. Wang X; Lai YC; Lai CH Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016203. PubMed ID: 16907173 [TBL] [Abstract][Full Text] [Related]
20. Barrier crossing driven by Lévy noise: universality and the role of noise intensity. Chechkin AV; Sliusarenko OY; Metzler R; Klafter J Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041101. PubMed ID: 17500859 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]