BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19518409)

  • 1. Protein fluorescence decay: a gamma function description of thermally induced interconversion of amino acid rotamers.
    Rolinski OJ; Scobie K; Birch DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):050901. PubMed ID: 19518409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human serum albumin-flavonoid interactions monitored by means of tryptophan kinetics.
    Rolinski OJ; Martin A; Birch DJ
    Ann N Y Acad Sci; 2008; 1130():314-9. PubMed ID: 18596365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of tryptophan fluorescence lifetimes in a series of human serum albumin mutants with substitutions in subdomain 2A.
    Siemiarczuk A; Petersen CE; Ha CE; Yang J; Bhagavan NV
    Cell Biochem Biophys; 2004; 40(2):115-22. PubMed ID: 15054218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of non-enzymatic glycation on the unfolding of human serum albumin.
    Mendez DL; Jensen RA; McElroy LA; Pena JM; Esquerra RM
    Arch Biochem Biophys; 2005 Dec; 444(2):92-9. PubMed ID: 16309624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fluorescence and circular dichroism of proteins in reverse micelles: application to the photophysics of human serum albumin and N-acetyl-L-tryptophanamide.
    Davis DM; McLoskey D; Birch DJ; Gellert PR; Kittlety RS; Swart RM
    Biophys Chem; 1996 Jun; 60(3):63-77. PubMed ID: 8679927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple conformational state of human serum albumin around single tryptophan residue at various pH revealed by time-resolved fluorescence spectroscopy.
    Otosu T; Nishimoto E; Yamashita S
    J Biochem; 2010 Feb; 147(2):191-200. PubMed ID: 19884191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring protein solution structure: Second moments of fluorescent spectra report heterogeneity of tryptophan rotamers.
    Gasymov OK; Abduragimov AR; Glasgow BJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 150():909-20. PubMed ID: 26119357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human serum albumin and quercetin interactions monitored by time-resolved fluorescence: evidence for enhanced discrete rotamer conformations.
    Rolinski OJ; Martin A; Birch DJ
    J Biomed Opt; 2007; 12(3):034013. PubMed ID: 17614721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of daunomycin antibiotic with human serum albumin: investigation by resonant mirror biosensor technique, fluorescence spectroscopy and molecular modeling methods.
    Tang K; Qin YM; Lin AH; Hu X; Zou GL
    J Pharm Biomed Anal; 2005 Sep; 39(3-4):404-10. PubMed ID: 15964731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpretation of fluorescence decays in proteins using continuous lifetime distributions.
    Alcala JR; Gratton E; Prendergast FG
    Biophys J; 1987 Jun; 51(6):925-36. PubMed ID: 3607213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorometric investigation of the interaction between methylene blue and human serum albumin.
    Hu YJ; Li W; Liu Y; Dong JX; Qu SS
    J Pharm Biomed Anal; 2005 Sep; 39(3-4):740-5. PubMed ID: 15905059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excited state interactions between flurbiprofen and tryptophan in drug-protein complexes and in model dyads. Fluorescence studies from the femtosecond to the nanosecond time domains.
    Vayá I; Bonancía P; Jiménez MC; Markovitsi D; Gustavsson T; Miranda MA
    Phys Chem Chem Phys; 2013 Apr; 15(13):4727-34. PubMed ID: 23426282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence of cis-1-amino-2-(3-indolyl)cyclohexane-1-carboxylic acid: a single tryptophan chi(1) rotamer model.
    Liu B; Thalji RK; Adams PD; Fronczek FR; McLaughlin ML; Barkley MD
    J Am Chem Soc; 2002 Nov; 124(44):13329-38. PubMed ID: 12405862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretation of fluorescence decays using a power-like model.
    Włodarczyk J; Kierdaszuk B
    Biophys J; 2003 Jul; 85(1):589-98. PubMed ID: 12829513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on effect of lipophilic curcumin on sub-domain IIA site of human serum albumin during unfolded and refolded states: a synchronous fluorescence spectroscopic study.
    Patra D; Barakat C; Tafech RM
    Colloids Surf B Biointerfaces; 2012 Jun; 94():354-61. PubMed ID: 22398366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-fluorimetry study on dielectric relaxation of human serum albumin.
    Buzády A; Erostyák J; Somogyi B
    Biophys Chem; 2000 Dec; 88(1-3):153-63. PubMed ID: 11152272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of tryptophan emission wavelength on conformation in cyclic hexapeptides.
    Pan CP; Callis PR; Barkley MD
    J Phys Chem B; 2006 Apr; 110(13):7009-16. PubMed ID: 16571015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1D radical motion in protein pocket: proton-coupled electron transfer in human serum albumin.
    Kobori Y; Norris JR
    J Am Chem Soc; 2006 Jan; 128(1):4-5. PubMed ID: 16390093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between the wavelength maximum of a protein and the temperature dependence of its intrinsic tryptophan fluorescence intensity.
    Saini K; Deep S
    Eur Biophys J; 2010 Sep; 39(10):1445-51. PubMed ID: 20376437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the mangiferin-human serum albumin complex by spectroscopic and molecular modeling approaches.
    Yue Y; Chen X; Qin J; Yao X
    J Pharm Biomed Anal; 2009 Apr; 49(3):753-9. PubMed ID: 19157745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.