These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 19518452)

  • 1. Crystal structure of highly concentrated, ionic microgel suspensions studied by neutron scattering.
    Gasser U; Sierra-Martin B; Fernandez-Nieves A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051403. PubMed ID: 19518452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of highly concentrated, ionic microgel suspensions studied by small-angle x-ray scattering.
    Gasser U; Fernandez-Nieves A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):052401. PubMed ID: 20866283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient formation of bcc crystals in suspensions of poly(N-isopropylacrylamide)-based microgels.
    Gasser U; Lietor-Santos JJ; Scotti A; Bunk O; Menzel A; Fernandez-Nieves A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052308. PubMed ID: 24329265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study.
    Stieger M; Pedersen JS; Lindner P; Richtering W
    Langmuir; 2004 Aug; 20(17):7283-92. PubMed ID: 15301516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inner structure of adsorbed ionic microgel particles.
    Wellert S; Hertle Y; Richter M; Medebach M; Magerl D; Wang W; Demé B; Radulescu A; Müller-Buschbaum P; Hellweg T; von Klitzing R
    Langmuir; 2014 Jun; 30(24):7168-76. PubMed ID: 24920223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscosity of soft spherical micro-hydrogel suspensions.
    Shewan HM; Stokes JR
    J Colloid Interface Sci; 2015 Mar; 442():75-81. PubMed ID: 25521552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FCC-HCP coexistence in dense thermo-responsive microgel crystals.
    Karthickeyan D; Joshi RG; Tata BVR
    J Chem Phys; 2017 Jun; 146(22):224503. PubMed ID: 29166046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structures and dynamics of thermosensitive microgel suspensions studied with three-dimensional cross-correlated light scattering.
    Pyett S; Richtering W
    J Chem Phys; 2005 Jan; 122(3):34709. PubMed ID: 15740219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic and hydrodynamic interaction in concentrated microgel suspensions: Hard or soft sphere behavior?
    Eckert T; Richtering W
    J Chem Phys; 2008 Sep; 129(12):124902. PubMed ID: 19045060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-induced deswelling kinetics of sterically stabilized poly(2-vinylpyridine) microgels probed by stopped-flow light scattering.
    Yin J; Dupin D; Li J; Armes SP; Liu S
    Langmuir; 2008 Sep; 24(17):9334-40. PubMed ID: 18642939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(N-isopropylacrylamide) microgel swelling behavior and suspension structure studied with small-angle neutron scattering.
    Zhou B; Gasser U; Fernandez-Nieves A
    Phys Rev E; 2023 Nov; 108(5-1):054604. PubMed ID: 38115405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Random hcp and fcc structures in thermoresponsive microgel crystals.
    Brijitta J; Tata BV; Joshi RG; Kaliyappan T
    J Chem Phys; 2009 Aug; 131(7):074904. PubMed ID: 19708760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheological behavior of acid-swellable cationic copolymer latexes.
    Tan BH; Tam KC; Dupin D; Armes SP
    Langmuir; 2010 Feb; 26(4):2736-44. PubMed ID: 19831408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoresponsive surfactants in microgel dispersions.
    Bradley M; Vincent B; Warren N; Eastoe J; Vesperinas A
    Langmuir; 2006 Jan; 22(1):101-5. PubMed ID: 16378407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of de-swelling and dynamics of dense ionic microgel suspensions.
    Romeo G; Imperiali L; Kim JW; Fernández-Nieves A; Weitz DA
    J Chem Phys; 2012 Mar; 136(12):124905. PubMed ID: 22462893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ observations of adsorbed microgel particles.
    FitzGerald PA; Dupin D; Armes SP; Wanless EJ
    Soft Matter; 2007 Apr; 3(5):580-586. PubMed ID: 32900021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective charge of ionic microgel particles in the swollen and collapsed states: the role of the steric microgel-ion repulsion.
    Moncho-Jordá A
    J Chem Phys; 2013 Aug; 139(6):064906. PubMed ID: 23947889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composite hydrogels with temperature sensitive heterogeneities: influence of gel matrix on the volume phase transition of embedded poly-(N-isopropylacrylamide) microgels.
    Meid J; Friedrich T; Tieke B; Lindner P; Richtering W
    Phys Chem Chem Phys; 2011 Feb; 13(8):3039-47. PubMed ID: 20882241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and dynamics of a thermoresponsive microgel around its volume phase transition temperature.
    Ghugare SV; Chiessi E; Telling MT; Deriu A; Gerelli Y; Wuttke J; Paradossi G
    J Phys Chem B; 2010 Aug; 114(32):10285-93. PubMed ID: 20701364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of single-particle compressibility on the fluid-solid phase transition for ionic microgel suspensions.
    Pelaez-Fernandez M; Souslov A; Lyon LA; Goldbart PM; Fernandez-Nieves A
    Phys Rev Lett; 2015 Mar; 114(9):098303. PubMed ID: 25793859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.