These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 19518545)

  • 21. Resonant suppression of Turing patterns by periodic illumination.
    Dolnik M; Zhabotinsky AM; Epstein IR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026101. PubMed ID: 11308536
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Galerkin model for Turing patterns on a sphere.
    Bhattacharya S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036208. PubMed ID: 16241549
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial periodic forcing of Turing structures.
    Dolnik M; Berenstein I; Zhabotinsky AM; Epstein IR
    Phys Rev Lett; 2001 Dec; 87(23):238301. PubMed ID: 11736479
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Destabilization of Turing structures by electric fields.
    Schmidt B; De Kepper P; Müller SC
    Phys Rev Lett; 2003 Mar; 90(11):118302. PubMed ID: 12688972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Turing patterns on radially growing domains: experiments and simulations.
    Konow C; Somberg NH; Chavez J; Epstein IR; Dolnik M
    Phys Chem Chem Phys; 2019 Mar; 21(12):6718-6724. PubMed ID: 30860212
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Turing instability in reaction-subdiffusion systems.
    Yadav A; Milu SM; Horsthemke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026116. PubMed ID: 18850906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Turing pattern formation in a two-layer system: superposition and superlattice patterns.
    Berenstein I; Dolnik M; Yang L; Zhabotinsky AM; Epstein IR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046219. PubMed ID: 15600507
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional patterns in the Lengyel-Rabai-Epstein model of the chlorine dioxide-iodine-malonic acid reaction.
    Moore PK; Horsthemke W
    Chaos; 2009 Dec; 19(4):043116. PubMed ID: 20059212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Breathing spiral waves in the chlorine dioxide-iodine-malonic acid reaction-diffusion system.
    Berenstein I; Muñuzuri AP; Yang L; Dolnik M; Zhabotinsky AM; Epstein IR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):025101. PubMed ID: 18850879
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental steady pattern formation in reaction-diffusion-advection systems.
    Míguez DG; Satnoianu RA; Muñuzuri AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):025201. PubMed ID: 16605385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction of chemical patterns in coupled layers.
    Míguez DG; Dolnik M; Epstein I; Muñuzuri AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046210. PubMed ID: 22181248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amplitude equations for breathing spiral waves in a forced reaction-diffusion system.
    Ghosh P; Ray DS
    J Chem Phys; 2011 Sep; 135(10):104112. PubMed ID: 21932881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coupled and forced patterns in reaction-diffusion systems.
    Epstein IR; Berenstein IB; Dolnik M; Vanag VK; Yang L; Zhabotinsky AM
    Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1864):397-408. PubMed ID: 17673412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A chemical approach to designing Turing patterns in reaction-diffusion systems.
    Lengyel I; Epstein IR
    Proc Natl Acad Sci U S A; 1992 May; 89(9):3977-9. PubMed ID: 11607288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dichotomous-noise-induced pattern formation in a reaction-diffusion system.
    Das D; Ray DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062924. PubMed ID: 23848765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Turing patterns, spatial bistability, and front interactions in the [ClO2, I2, I-, CH2(COOH)2] reaction.
    Strier DE; De Kepper P; Boissonade J
    J Phys Chem A; 2005 Feb; 109(7):1357-63. PubMed ID: 16833452
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Traveling-stripe forcing generates hexagonal patterns.
    Míguez DG; Nicola EM; Muñuzuri AP; Casademunt J; Sagués F; Kramer L
    Phys Rev Lett; 2004 Jul; 93(4):048303. PubMed ID: 15323800
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Forced patterns near a Turing-Hopf bifurcation.
    Topaz CM; Catllá AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026213. PubMed ID: 20365644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design and control of patterns in reaction-diffusion systems.
    Vanag VK; Epstein IR
    Chaos; 2008 Jun; 18(2):026107. PubMed ID: 18601509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial resonances and superposition patterns in a reaction-diffusion model with interacting Turing modes.
    Yang L; Dolnik M; Zhabotinsky AM; Epstein IR
    Phys Rev Lett; 2002 May; 88(20):208303. PubMed ID: 12005611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.