These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 19518551)
1. Deformed Gaussian-orthogonal-ensemble description of small-world networks. de Carvalho JX; Jalan S; Hussein MS Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056222. PubMed ID: 19518551 [TBL] [Abstract][Full Text] [Related]
2. Spectral analysis of deformed random networks. Jalan S Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046101. PubMed ID: 19905384 [TBL] [Abstract][Full Text] [Related]
3. Random matrix analysis of complex networks. Jalan S; Bandyopadhyay JN Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046107. PubMed ID: 17995060 [TBL] [Abstract][Full Text] [Related]
4. Universality in complex networks: random matrix analysis. Bandyopadhyay JN; Jalan S Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026109. PubMed ID: 17930106 [TBL] [Abstract][Full Text] [Related]
5. Crossover between the Gaussian orthogonal ensemble, the Gaussian unitary ensemble, and Poissonian statistics. Schweiner F; Laturner J; Main J; Wunner G Phys Rev E; 2017 Nov; 96(5-1):052217. PubMed ID: 29347683 [TBL] [Abstract][Full Text] [Related]
6. Comment on "Spectral analysis of deformed random networks". Abuelenin SM; Abul-Magd AY Phys Rev E; 2018 Jun; 97(6-2):066301. PubMed ID: 30011597 [TBL] [Abstract][Full Text] [Related]
7. Application of random matrix theory to microarray data for discovering functional gene modules. Luo F; Zhong J; Yang Y; Zhou J Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031924. PubMed ID: 16605575 [TBL] [Abstract][Full Text] [Related]
8. Level density for deformations of the Gaussian orthogonal ensemble. Bertuola AC; de Carvalho JX; Hussein MS; Pato MP; Sargeant AJ Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036117. PubMed ID: 15903503 [TBL] [Abstract][Full Text] [Related]
9. Eigenvalue ratio statistics of complex networks: Disorder versus randomness. Mishra A; Raghav T; Jalan S Phys Rev E; 2022 Jun; 105(6-1):064307. PubMed ID: 35854611 [TBL] [Abstract][Full Text] [Related]
10. Random matrix analysis of localization properties of gene coexpression network. Jalan S; Solymosi N; Vattay G; Li B Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046118. PubMed ID: 20481797 [TBL] [Abstract][Full Text] [Related]
11. Exploring universality of the β-Gaussian ensemble in complex networks via intermediate eigenvalue statistics. Mishra A; Cheong KH Phys Rev E; 2024 Jan; 109(1-1):014218. PubMed ID: 38366533 [TBL] [Abstract][Full Text] [Related]
12. Large scale cross-correlations in Internet traffic. Barthélemy M; Gondran B; Guichard E Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056110. PubMed ID: 12513559 [TBL] [Abstract][Full Text] [Related]
13. Transition from Gaussian-orthogonal to Gaussian-unitary ensemble in a microwave billiard with threefold symmetry. Schäfer R; Barth M; Leyvraz F; Müller M; Seligman TH; Stöckmann HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016202. PubMed ID: 12241456 [TBL] [Abstract][Full Text] [Related]
14. Gaussian orthogonal ensemble statistics in graphene billiards with the shape of classically integrable billiards. Yu P; Li ZY; Xu HY; Huang L; Dietz B; Grebogi C; Lai YC Phys Rev E; 2016 Dec; 94(6-1):062214. PubMed ID: 28085331 [TBL] [Abstract][Full Text] [Related]
15. Characteristics of level-spacing statistics in chaotic graphene billiards. Huang L; Lai YC; Grebogi C Chaos; 2011 Mar; 21(1):013102. PubMed ID: 21456816 [TBL] [Abstract][Full Text] [Related]
16. Relativistic quantum level-spacing statistics in chaotic graphene billiards. Huang L; Lai YC; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):055203. PubMed ID: 20866288 [TBL] [Abstract][Full Text] [Related]
18. Transitions in eigenvalue and wavefunction structure in (1+2) -body random matrix ensembles with spin. Vyas M; Kota VK; Chavda ND Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036212. PubMed ID: 20365837 [TBL] [Abstract][Full Text] [Related]
19. Moments of vicious walkers and Möbius graph expansions. Katori M; Komatsuda N Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051110. PubMed ID: 12786137 [TBL] [Abstract][Full Text] [Related]
20. Random matrix approach to cross correlations in financial data. Plerou V; Gopikrishnan P; Rosenow B; Amaral LA; Guhr T; Stanley HE Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066126. PubMed ID: 12188802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]