These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19518565)

  • 1. Suppression of instabilities in multiphase flow by geometric confinement.
    Humphry KJ; Ajdari A; Fernández-Nieves A; Stone HA; Weitz DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056310. PubMed ID: 19518565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dripping to jetting transitions in coflowing liquid streams.
    Utada AS; Fernandez-Nieves A; Stone HA; Weitz DA
    Phys Rev Lett; 2007 Aug; 99(9):094502. PubMed ID: 17931011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of double emulsion break-up in three phase glass capillary microfluidic devices.
    Nabavi SA; Gu S; Vladisavljević GT; Ekanem EE
    J Colloid Interface Sci; 2015 Jul; 450():279-287. PubMed ID: 25828435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of monodisperse droplet generation in flow-focusing devices with hydrophilic and hydrophobic surfaces.
    Roberts CC; Rao RR; Loewenberg M; Brooks CF; Galambos P; Grillet AM; Nemer MB
    Lab Chip; 2012 Apr; 12(8):1540-7. PubMed ID: 22398953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emulsion droplet formation in coflowing liquid streams.
    Chen Y; Wu L; Zhang C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013002. PubMed ID: 23410421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid flow focused by a gas: jetting, dripping, and recirculation.
    Herrada MA; Gañán-Calvo AM; Ojeda-Monge A; Bluth B; Riesco-Chueca P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036323. PubMed ID: 18851159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction and control of drop formation modes in microfluidic generation of double emulsions by single-step emulsification.
    Nabavi SA; Vladisavljević GT; Bandulasena MV; Arjmandi-Tash O; Manović V
    J Colloid Interface Sci; 2017 Nov; 505():315-324. PubMed ID: 28601740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries.
    Guillot P; Colin A; Ajdari A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016307. PubMed ID: 18764050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absolute instability of a liquid jet in a coflowing stream.
    Utada AS; Fernandez-Nieves A; Gordillo JM; Weitz DA
    Phys Rev Lett; 2008 Jan; 100(1):014502. PubMed ID: 18232775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breakup of a fluid thread in a confined geometry: droplet-plug transition, perturbation sensitivity, and kinetic stabilization with confinement.
    Hagedorn JG; Martys NS; Douglas JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056312. PubMed ID: 15244937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The drop size in membrane emulsification determined from the balance of capillary and hydrodynamic forces.
    Christov NC; Danov KD; Danova DK; Kralchevsky PA
    Langmuir; 2008 Feb; 24(4):1397-410. PubMed ID: 17963414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coexistence of different droplet generating instabilities: new breakup regimes of a liquid filament.
    Hein M; Fleury JB; Seemann R
    Soft Matter; 2015 Jul; 11(26):5246-52. PubMed ID: 26053325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of liquid drops at an orifice and dynamics of pinch-off in liquid jets.
    Borthakur MP; Biswas G; Bandyopadhyay D
    Phys Rev E; 2017 Jul; 96(1-1):013115. PubMed ID: 29347101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic resistance of single confined moving drops in rectangular microchannels.
    Vanapalli SA; Banpurkar AG; van den Ende D; Duits MH; Mugele F
    Lab Chip; 2009 Apr; 9(7):982-90. PubMed ID: 19294311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling.
    Glawdel T; Elbuken C; Ren CL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016323. PubMed ID: 22400673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coalescing drops in microfluidic parking networks: A multifunctional platform for drop-based microfluidics.
    Bithi SS; Wang WS; Sun M; Blawzdziewicz J; Vanapalli SA
    Biomicrofluidics; 2014 May; 8(3):034118. PubMed ID: 25379078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capillary-Based Microfluidics-Coflow, Flow-Focusing, Electro-Coflow, Drops, Jets, and Instabilities.
    Guerrero J; Chang YW; Fragkopoulos AA; Fernandez-Nieves A
    Small; 2020 Mar; 16(9):e1904344. PubMed ID: 31663270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sheathless hydrodynamic positioning of buoyant drops and bubbles inside microchannels.
    Stan CA; Guglielmini L; Ellerbee AK; Caviezel D; Stone HA; Whitesides GM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036302. PubMed ID: 22060487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of confinement on the deformation of microfluidic drops.
    Ulloa C; Ahumada A; Cordero ML
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033004. PubMed ID: 24730934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative breakups induced by drop-to-drop interactions in one-dimensional flows of drops against micro-obstacles.
    Schmit A; Salkin L; Courbin L; Panizza P
    Soft Matter; 2015 Mar; 11(12):2454-60. PubMed ID: 25668310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.