These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19518565)

  • 21. Role of Interfacial Tension on Viscous Multiphase Flows in Coaxial Microfluidic Channels.
    Dinh T; Cubaud T
    Langmuir; 2021 Jun; 37(24):7420-7429. PubMed ID: 34115496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Nanoparticle Surfactants on the Breakup of Free-Falling Water Jets during Continuous Processing of Reconfigurable Structured Liquid Droplets.
    Toor A; Helms BA; Russell TP
    Nano Lett; 2017 May; 17(5):3119-3125. PubMed ID: 28358213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis.
    Nunes JK; Tsai SS; Wan J; Stone HA
    J Phys D Appl Phys; 2013 Mar; 46(11):. PubMed ID: 23626378
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dripping, Jetting and Regime Transition of Droplet Formation in a Buoyancy-Assisted Microfluidic Device.
    Shen C; Liu F; Wu L; Yu C; Yu W
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33121113
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Criteria for drop generation in multiphase microfluidic devices.
    Buttacci JD; Loewenberg M; Roberts CC; Nemer MB; Rao RR
    Phys Rev E; 2017 Jun; 95(6-1):063103. PubMed ID: 28709301
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations.
    Glawdel T; Elbuken C; Ren CL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016322. PubMed ID: 22400672
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Parallelization of microfluidic flow-focusing devices.
    Amstad E; Chen X; Eggersdorfer M; Cohen N; Kodger TE; Ren CL; Weitz DA
    Phys Rev E; 2017 Apr; 95(4-1):043105. PubMed ID: 28505795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A ternary model for double-emulsion formation in a capillary microfluidic device.
    Park JM; Anderson PD
    Lab Chip; 2012 Aug; 12(15):2672-7. PubMed ID: 22592893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem.
    Ren Y; Liu Z; Shum HC
    Lab Chip; 2015 Jan; 15(1):121-34. PubMed ID: 25316203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Opposed flow focusing: evidence of a second order jetting transition.
    Dong J; Meissner M; Faers MA; Eggers J; Seddon AM; Royall CP
    Soft Matter; 2018 Nov; 14(41):8344-8351. PubMed ID: 30298898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of the breakup process of viscous droplets by an external electric field inside a microfluidic device.
    Li Y; Jain M; Ma Y; Nandakumar K
    Soft Matter; 2015 May; 11(19):3884-99. PubMed ID: 25864524
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of the entry region on the instability of a coflowing injector device.
    Augello L; Fani A; Gallaire F
    J Phys Condens Matter; 2018 Jul; 30(28):284003. PubMed ID: 29794328
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model.
    De Menech M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031505. PubMed ID: 16605530
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transient dynamics of confined liquid drops in a uniform electric field.
    Mandal S; Chaudhury K; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053020. PubMed ID: 25353893
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissolution of carbon dioxide bubbles and microfluidic multiphase flows.
    Sun R; Cubaud T
    Lab Chip; 2011 Sep; 11(17):2924-8. PubMed ID: 21755094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Colloidal stability dictates drop breakup under electric fields.
    Lanauze JA; Sengupta R; Bleier BJ; Yezer BA; Khair AS; Walker LM
    Soft Matter; 2018 Nov; 14(46):9351-9360. PubMed ID: 30457153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrodynamic control of the interface between two liquids flowing through a horizontal or vertical microchannel.
    Stiles PJ; Fletcher DF
    Lab Chip; 2004 Apr; 4(2):121-4. PubMed ID: 15052351
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of inlet channel geometry on microfluidic drop formation.
    Abate AR; Poitzsch A; Hwang Y; Lee J; Czerwinska J; Weitz DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026310. PubMed ID: 19792252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Geometrically mediated breakup of drops in microfluidic devices.
    Link DR; Anna SL; Weitz DA; Stone HA
    Phys Rev Lett; 2004 Feb; 92(5):054503. PubMed ID: 14995311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamics of Drop Formation in an Electric Field.
    Notz PK; Basaran OA
    J Colloid Interface Sci; 1999 May; 213(1):218-237. PubMed ID: 10191025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.