These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19518565)

  • 41. An unbounded approach to microfluidics using the Rayleigh-Plateau instability of viscous threads directly drawn in a bath.
    Cai L; Marthelot J; Brun PT
    Proc Natl Acad Sci U S A; 2019 Nov; 116(46):22966-22971. PubMed ID: 31659022
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrolytic drops in an electric field: A numerical study of drop deformation and breakup.
    Pillai R; Berry JD; Harvie DJ; Davidson MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013007. PubMed ID: 26274270
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Global stability of the focusing effect of fluid jet flows.
    Montanero JM; Rebollo-Muñoz N; Herrada MA; Gañán-Calvo AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036309. PubMed ID: 21517589
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Direct measurement of the differential pressure during drop formation in a co-flow microfluidic device.
    Xu K; Tostado CP; Xu JH; Lu YC; Luo GS
    Lab Chip; 2014 Apr; 14(7):1357-66. PubMed ID: 24554196
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unconditional jetting.
    Gañán-Calvo AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026304. PubMed ID: 18850933
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Linear instability of a coflowing jet under an axial electric field.
    Li F; Yin XY; Yin XZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036304. PubMed ID: 17025740
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Controlled formation of double-emulsion drops in sudden expansion channels.
    Kim SH; Kim B
    J Colloid Interface Sci; 2014 Feb; 415():26-31. PubMed ID: 24267326
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Production of monodisperse drops from viscous fluids.
    Håti AG; Szymborski TR; Steinacher M; Amstad E
    Lab Chip; 2018 Feb; 18(4):648-654. PubMed ID: 29359212
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Glass-Based Devices to Generate Drops and Emulsions.
    Guerrero J; Rojo J; de la Cotte A; Aguilera-Sáez LM; Vila E; Fernandez-Nieves A
    J Vis Exp; 2022 Apr; (182):. PubMed ID: 35467665
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of channel position on sample confinement in two-dimensional planar microfluidic devices.
    Lerch MA; Hoffman MD; Jacobson SC
    Lab Chip; 2008 Feb; 8(2):316-22. PubMed ID: 18231672
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Superconfinement tailors fluid flow at microscales.
    Setu SA; Dullens RP; Hernández-Machado A; Pagonabarraga I; Aarts DG; Ledesma-Aguilar R
    Nat Commun; 2015 Jun; 6():7297. PubMed ID: 26073752
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions.
    Christopher GF; Noharuddin NN; Taylor JA; Anna SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036317. PubMed ID: 18851153
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dripping, jetting and tip streaming.
    Montanero JM; Gañán-Calvo AM
    Rep Prog Phys; 2020 Sep; 83(9):097001. PubMed ID: 32647097
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Increased drop formation frequency via reduction of surfactant interactions in flow-focusing microfluidic devices.
    Josephides DN; Sajjadi S
    Langmuir; 2015 Jan; 31(3):1218-24. PubMed ID: 25517938
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrodynamic focusing investigation in a micro-flow cytometer.
    Yang AS; Hsieh WH
    Biomed Microdevices; 2007 Apr; 9(2):113-22. PubMed ID: 17151936
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of Nonionic Surfactant on the Deformation and Breakup of a Drop in an Electric Field.
    Ha JW; Yang SM
    J Colloid Interface Sci; 1998 Oct; 206(1):195-204. PubMed ID: 9761644
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ultrasound resonance in coflowing immiscible liquids in a microchannel.
    Hoque SZ; Sen AK
    Phys Rev E; 2023 Mar; 107(3-2):035104. PubMed ID: 37073059
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interfacial jetting phenomena induced by focused surface vibrations.
    Tan MK; Friend JR; Yeo LY
    Phys Rev Lett; 2009 Jul; 103(2):024501. PubMed ID: 19659210
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Drop formation in non-planar microfluidic devices.
    Rotem A; Abate AR; Utada AS; Van Steijn V; Weitz DA
    Lab Chip; 2012 Nov; 12(21):4263-8. PubMed ID: 22864475
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microfluidic breakups of confined droplets against a linear obstacle: The importance of the viscosity contrast.
    Salkin L; Courbin L; Panizza P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036317. PubMed ID: 23031023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.