These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19518591)

  • 1. Numerical solutions of the time-dependent Schrödinger equation: reduction of the error due to space discretization.
    Shao H; Wang Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056705. PubMed ID: 19518591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate numerical solutions of the time-dependent Schrödinger equation.
    van Dijk W; Toyama FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036707. PubMed ID: 17500826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the accuracy of the spatial discretization in finite-difference electrochemical kinetic simulations, by means of the extended Numerov method.
    Bieniasz LK
    J Comput Chem; 2004 Jun; 25(8):1075-83. PubMed ID: 15067683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discretization-related issues in the Kardar-Parisi-Zhang equation: consistency, Galilean-invariance violation, and fluctuation-dissipation relation.
    Wio HS; Revelli JA; Deza RR; Escudero C; de La Lama MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066706. PubMed ID: 20866543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical solutions of the time-dependent Schrödinger equation in two dimensions.
    van Dijk W; Vanderwoerd T; Prins SJ
    Phys Rev E; 2017 Feb; 95(2-1):023310. PubMed ID: 28298000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exact transparent boundary condition for the three-dimensional Schrödinger equation in a rectangular cuboid computational domain.
    Feshchenko RM; Popov AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053308. PubMed ID: 24329380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A generalization of Numerov's method for the numerical solution of the Schrodinger equation in two dimensions.
    Avdelas G; Konguetsof A; Simos TE
    Comput Chem; 2000 Jul; 24(5):577-84. PubMed ID: 10890367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of the space dependent fractional Schrödinger equation for London dispersion potential type.
    Al-Raeei M; El-Daher MS
    Heliyon; 2020 Jul; 6(7):e04495. PubMed ID: 32715142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency and accuracy of numerical solutions to the time-dependent Schrödinger equation.
    van Dijk W; Brown J; Spyksma K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056703. PubMed ID: 22181543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Higher-order splitting algorithms for solving the nonlinear Schrödinger equation and their instabilities.
    Chin SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056708. PubMed ID: 18233791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multidimensional quantum trajectories: applications of the derivative propagation method.
    Trahan CJ; Wyatt RE; Poirier B
    J Chem Phys; 2005 Apr; 122(16):164104. PubMed ID: 15945669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical solutions of the Schrödinger equation with source terms or time-dependent potentials.
    van Dijk W; Toyama FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063309. PubMed ID: 25615224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable second-order scheme for integrating the Kuramoto-Sivanshinsky equation in polar coordinates using distributed approximating functionals.
    Blomgren P; Gasner S; Palacios A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036701. PubMed ID: 16241608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical validation of the quantum lattice Boltzmann scheme in two and three dimensions.
    Palpacelli S; Succi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066704. PubMed ID: 17677386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Time Two-Mesh Compact Difference Method for the One-Dimensional Nonlinear Schrödinger Equation.
    He S; Liu Y; Li H
    Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient explicit numerical solutions of the time-dependent Schrödinger equation.
    van Dijk W
    Phys Rev E; 2022 Feb; 105(2-2):025303. PubMed ID: 35291168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of a hybrid finite-element method for solving a scattering Schrödinger equation.
    Power J; Rawitscher G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066707. PubMed ID: 23368078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions.
    Ankiewicz A; Wang Y; Wabnitz S; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012907. PubMed ID: 24580297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling the accuracy of unconditionally stable algorithms in the Cahn-Hilliard equation.
    Cheng M; Warren JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):017702. PubMed ID: 17358297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sixth-order schemes for laser-matter interaction in the Schrödinger equation.
    Singh P
    J Chem Phys; 2019 Apr; 150(15):154111. PubMed ID: 31005117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.