These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 19518628)

  • 1. High-fidelity transport of trapped-ion qubits through an X-junction trap array.
    Blakestad RB; Ospelkaus C; VanDevender AP; Amini JM; Britton J; Leibfried D; Wineland DJ
    Phys Rev Lett; 2009 Apr; 102(15):153002. PubMed ID: 19518628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion Transport and Reordering in a 2D Trap Array.
    Wan Y; Jördens R; Erickson SD; Wu JJ; Bowler R; Tan TR; Hou PY; Wineland DJ; Wilson AC; Leibfried D
    Adv Quantum Technol; 2020; 3(11):. PubMed ID: 39380610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate.
    Leibfried D; DeMarco B; Meyer V; Lucas D; Barrett M; Britton J; Itano WM; Jelenković B; Langer C; Rosenband T; Wineland DJ
    Nature; 2003 Mar; 422(6930):412-5. PubMed ID: 12660778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Fidelity Preservation of Quantum Information During Trapped-Ion Transport.
    Kaufmann P; Gloger TF; Kaufmann D; Johanning M; Wunderlich C
    Phys Rev Lett; 2018 Jan; 120(1):010501. PubMed ID: 29350951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling fast transport of cold trapped ions.
    Walther A; Ziesel F; Ruster T; Dawkins ST; Ott K; Hettrich M; Singer K; Schmidt-Kaler F; Poschinger U
    Phys Rev Lett; 2012 Aug; 109(8):080501. PubMed ID: 23002727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherent diabatic ion transport and separation in a multizone trap array.
    Bowler R; Gaebler J; Lin Y; Tan TR; Hanneke D; Jost JD; Home JP; Leibfried D; Wineland DJ
    Phys Rev Lett; 2012 Aug; 109(8):080502. PubMed ID: 23002728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer.
    Gulde S; Riebe M; Lancaster GP; Becher C; Eschner J; Häffner H; Schmidt-Kaler F; Chuang IL; Blatt R
    Nature; 2003 Jan; 421(6918):48-50. PubMed ID: 12511949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motional heating in a graphene-coated ion trap.
    Eltony AM; Park HG; Wang SX; Kong J; Chuang IL
    Nano Lett; 2014 Oct; 14(10):5712-6. PubMed ID: 25162791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heating of a Trapped Ion Induced by Dielectric Materials.
    Teller M; Fioretto DA; Holz PC; Schindler P; Messerer V; Schüppert K; Zou Y; Blatt R; Chiaverini J; Sage J; Northup TE
    Phys Rev Lett; 2021 Jun; 126(23):230505. PubMed ID: 34170180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfabricated surface-electrode ion trap for scalable quantum information processing.
    Seidelin S; Chiaverini J; Reichle R; Bollinger JJ; Leibfried D; Britton J; Wesenberg JH; Blakestad RB; Epstein RJ; Hume DB; Itano WM; Jost JD; Langer C; Ozeri R; Shiga N; Wineland DJ
    Phys Rev Lett; 2006 Jun; 96(25):253003. PubMed ID: 16907302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Realization of a quantum walk with one and two trapped ions.
    Zähringer F; Kirchmair G; Gerritsma R; Solano E; Blatt R; Roos CF
    Phys Rev Lett; 2010 Mar; 104(10):100503. PubMed ID: 20366407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deterministic quantum teleportation of atomic qubits.
    Barrett MD; Chiaverini J; Schaetz T; Britton J; Itano WM; Jost JD; Knill E; Langer C; Leibfried D; Ozeri R; Wineland DJ
    Nature; 2004 Jun; 429(6993):737-9. PubMed ID: 15201904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaling the ion trap quantum processor.
    Monroe C; Kim J
    Science; 2013 Mar; 339(6124):1164-9. PubMed ID: 23471398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architecture for a large-scale ion-trap quantum computer.
    Kielpinski D; Monroe C; Wineland DJ
    Nature; 2002 Jun; 417(6890):709-11. PubMed ID: 12066177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology.
    Wilpers G; See P; Gill P; Sinclair AG
    Nat Nanotechnol; 2012 Sep; 7(9):572-6. PubMed ID: 22820742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of Multispecies Ion Crystals through a Junction in a Radio-Frequency Paul Trap.
    Burton WC; Estey B; Hoffman IM; Perry AR; Volin C; Price G
    Phys Rev Lett; 2023 Apr; 130(17):173202. PubMed ID: 37172235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion-trap quantum logic using long-wavelength radiation.
    Mintert F; Wunderlich C
    Phys Rev Lett; 2001 Dec; 87(25):257904. PubMed ID: 11736608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaling and suppression of anomalous heating in ion traps.
    Deslauriers L; Olmschenk S; Stick D; Hensinger WK; Sterk J; Monroe C
    Phys Rev Lett; 2006 Sep; 97(10):103007. PubMed ID: 17025815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Buffer-Gas Cooling of a Single Ion in a Multipole Radio Frequency Trap Beyond the Critical Mass Ratio.
    Höltkemeier B; Weckesser P; López-Carrera H; Weidemüller M
    Phys Rev Lett; 2016 Jun; 116(23):233003. PubMed ID: 27341228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Realization of quantum error correction.
    Chiaverini J; Leibfried D; Schaetz T; Barrett MD; Blakestad RB; Britton J; Itano WM; Jost JD; Knill E; Langer C; Ozeri R; Wineland DJ
    Nature; 2004 Dec; 432(7017):602-5. PubMed ID: 15577904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.