These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 19518672)

  • 1. Superexchange-driven magnetoelectricity in magnetic vortices.
    Delaney KT; Mostovoy M; Spaldin NA
    Phys Rev Lett; 2009 Apr; 102(15):157203. PubMed ID: 19518672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unexpectedly large electronic contribution to linear magnetoelectricity.
    Bousquet E; Spaldin NA; Delaney KT
    Phys Rev Lett; 2011 Mar; 106(10):107202. PubMed ID: 21469827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling the Room-Temperature Magnetoelectricity of Troilite FeS.
    Ricci F; Bousquet E
    Phys Rev Lett; 2016 Jun; 116(22):227601. PubMed ID: 27314737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bulk magnetoelectricity in the hexagonal manganites and ferrites.
    Das H; Wysocki AL; Geng Y; Wu W; Fennie CJ
    Nat Commun; 2014; 5():2998. PubMed ID: 24389675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic-field induced spin-Peierls instability in strongly frustrated quantum spin lattices.
    Richter J; Derzhko O; Schulenburg J
    Phys Rev Lett; 2004 Sep; 93(10):107206. PubMed ID: 15447447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio study of magnetoelectricity in Fe/BaTiO3: the effects of n-doped perovskite interfaces.
    Hölzer M; Fechner M; Ostanin S; Mertig I
    J Phys Condens Matter; 2011 Nov; 23(45):455902. PubMed ID: 22037417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscopic origin of large negative magnetoelectric coupling in Sr(1/2)Ba(1/2)MnO3.
    Giovannetti G; Kumar S; Ortix C; Capone M; van den Brink J
    Phys Rev Lett; 2012 Sep; 109(10):107601. PubMed ID: 23005326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Extremely Strong Antiferromagnetic Superexchange in Silver(II) Fluorides: Challenging the Oxocuprates(II).
    Kurzydłowski D; Grochala W
    Angew Chem Int Ed Engl; 2017 Aug; 56(34):10114-10117. PubMed ID: 28485841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin frustration in 2D kagomé lattices: a problem for inorganic synthetic chemistry.
    Nocera DG; Bartlett BM; Grohol D; Papoutsakis D; Shores MP
    Chemistry; 2004 Aug; 10(16):3850-9. PubMed ID: 15316993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strongly enhanced pinning of magnetic vortices in type-II superconductors by conformal crystal arrays.
    Ray D; Olson Reichhardt CJ; Jankó B; Reichhardt C
    Phys Rev Lett; 2013 Jun; 110(26):267001. PubMed ID: 23848910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale Modeling of Magnetoelectric Nanoparticles for the Analysis of Spatially Selective Neural Stimulation.
    Kumari P; Wunderlich H; Milojkovic A; López JE; Fossati A; Jahanshahi A; Kozielski K
    Adv Healthc Mater; 2024 Jan; ():e2302871. PubMed ID: 38262344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-hysteretic colossal magnetoelectricity in a collinear antiferromagnet.
    Oh YS; Artyukhin S; Yang JJ; Zapf V; Kim JW; Vanderbilt D; Cheong SW
    Nat Commun; 2014; 5():3201. PubMed ID: 24469350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frustrated superexchange interaction versus orbital order in a LaVO3 crystal.
    Zhou JS; Ren Y; Yan JQ; Mitchell JF; Goodenough JB
    Phys Rev Lett; 2008 Feb; 100(4):046401. PubMed ID: 18352309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear magnetoelectric effect by orbital magnetism.
    Scaramucci A; Bousquet E; Fechner M; Mostovoy M; Spaldin NA
    Phys Rev Lett; 2012 Nov; 109(19):197203. PubMed ID: 23215421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterning Graphitic C-N Sheets into a Kagome Lattice for Magnetic Materials.
    Li X; Zhou J; Wang Q; Kawazoe Y; Jena P
    J Phys Chem Lett; 2013 Jan; 4(2):259-63. PubMed ID: 26283431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic correlations in the Hubbard model on triangular and Kagomé lattices.
    Bulut N; Koshibae W; Maekawa S
    Phys Rev Lett; 2005 Jul; 95(3):037001. PubMed ID: 16090764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterferroicity with seesaw-type magnetoelectricity.
    Wang Z; Dong S
    Proc Natl Acad Sci U S A; 2023 Dec; 120(49):e2305197120. PubMed ID: 38015837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perpendicular magnetization and generic realization of the Ising model in artificial spin ice.
    Zhang S; Li J; Gilbert I; Bartell J; Erickson MJ; Pan Y; Lammert PE; Nisoli C; Kohli KK; Misra R; Crespi VH; Samarth N; Leighton C; Schiffer P
    Phys Rev Lett; 2012 Aug; 109(8):087201. PubMed ID: 23002770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vortex-antivortex lattices in superconducting films with magnetic pinning arrays.
    Milosević MV; Peeters FM
    Phys Rev Lett; 2004 Dec; 93(26 Pt 1):267006. PubMed ID: 15698012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of kagome lattices, entangled webs and linear fibers with vibrating patchy particles in two dimensions.
    Chapela GA; Guzmán O; Martínez-González JA; Díaz-Leyva P; Quintana-H J
    Soft Matter; 2014 Dec; 10(45):9167-76. PubMed ID: 25319927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.