These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19518709)

  • 1. Prospects for a millihertz-linewidth laser.
    Meiser D; Ye J; Carlson DR; Holland MJ
    Phys Rev Lett; 2009 Apr; 102(16):163601. PubMed ID: 19518709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb.
    Inaba H; Hosaka K; Yasuda M; Nakajima Y; Iwakuni K; Akamatsu D; Okubo S; Kohno T; Onae A; Hong FL
    Opt Express; 2013 Apr; 21(7):7891-6. PubMed ID: 23571880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of motion-dependent nonlinear dispersion with narrow-linewidth atoms in an optical cavity.
    Westergaard PG; Christensen BT; Tieri D; Matin R; Cooper J; Holland M; Ye J; Thomsen JW
    Phys Rev Lett; 2015 Mar; 114(9):093002. PubMed ID: 25793810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superradiance on the millihertz linewidth strontium clock transition.
    Norcia MA; Winchester MN; Cline JR; Thompson JK
    Sci Adv; 2016 Oct; 2(10):e1601231. PubMed ID: 27757423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical clocks based on ultranarrow three-photon resonances in alkaline Earth atoms.
    Hong T; Cramer C; Nagourney W; Fortson EN
    Phys Rev Lett; 2005 Feb; 94(5):050801. PubMed ID: 15783624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical clock with millihertz linewidth based on a phase-matching effect.
    Yu D; Chen J
    Phys Rev Lett; 2007 Feb; 98(5):050801. PubMed ID: 17358840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser.
    Liang W; Ilchenko VS; Savchenkov AA; Matsko AB; Seidel D; Maleki L
    Opt Lett; 2010 Aug; 35(16):2822-4. PubMed ID: 20717469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A superradiant clock laser on a magic wavelength optical lattice.
    Maier T; Kraemer S; Ostermann L; Ritsch H
    Opt Express; 2014 Jun; 22(11):13269-79. PubMed ID: 24921521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Narrow-linewidth light source for a coherent Raman transfer of ultracold molecules.
    Aikawa K; Kobayashi J; Oasa K; Kishimoto T; Ueda M; Inouye S
    Opt Express; 2011 Jul; 19(15):14479-86. PubMed ID: 21934810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity.
    Lewoczko-Adamczyk W; Pyrlik C; Häger J; Schwertfeger S; Wicht A; Peters A; Erbert G; Tränkle G
    Opt Express; 2015 Apr; 23(8):9705-9. PubMed ID: 25969008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An optical lattice clock.
    Takamoto M; Hong FL; Higashi R; Katori H
    Nature; 2005 May; 435(7040):321-4. PubMed ID: 15902252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultranarrow Superradiant Lasing by Dark Atom-Photon Dressed States.
    Zhang Y; Shan C; Mølmer K
    Phys Rev Lett; 2021 Mar; 126(12):123602. PubMed ID: 33834832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active Faraday optical frequency standard.
    Zhuang W; Chen J
    Opt Lett; 2014 Nov; 39(21):6339-42. PubMed ID: 25361349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supercooling of Atoms in an Optical Resonator.
    Xu M; Jäger SB; Schütz S; Cooper J; Morigi G; Holland MJ
    Phys Rev Lett; 2016 Apr; 116(15):153002. PubMed ID: 27127966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of two independent Sr optical clocks with 1×10(-17) stability at 10(3) s.
    Nicholson TL; Martin MJ; Williams JR; Bloom BJ; Bishof M; Swallows MD; Campbell SL; Ye J
    Phys Rev Lett; 2012 Dec; 109(23):230801. PubMed ID: 23368177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice.
    Barber ZW; Hoyt CW; Oates CW; Hollberg L; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2006 Mar; 96(8):083002. PubMed ID: 16606176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks.
    Taichenachev AV; Yudin VI; Oates CW; Hoyt CW; Barber ZW; Hollberg L
    Phys Rev Lett; 2006 Mar; 96(8):083001. PubMed ID: 16606175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A steady-state superradiant laser with less than one intracavity photon.
    Bohnet JG; Chen Z; Weiner JM; Meiser D; Holland MJ; Thompson JK
    Nature; 2012 Apr; 484(7392):78-81. PubMed ID: 22481360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical and RF stability transfer in a monolithic coupled-cavity colliding pulse mode-locked quantum dot laser.
    Ardey A; Kim J; Sarailou E; Delfyett PJ
    Opt Lett; 2012 Sep; 37(17):3480-2. PubMed ID: 22940922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear optical filter with ultranarrow bandwidth approaching the natural linewidth.
    Wang Y; Zhang S; Wang D; Tao Z; Hong Y; Chen J
    Opt Lett; 2012 Oct; 37(19):4059-61. PubMed ID: 23027278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.