These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 19518713)

  • 1. Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime.
    Schwaiger S; Bröll M; Krohn A; Stemmann A; Heyn C; Stark Y; Stickler D; Heitmann D; Mendach S
    Phys Rev Lett; 2009 Apr; 102(16):163903. PubMed ID: 19518713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the Spontaneous Emission Rate of Quantum Wells in Rolled-Up Hyperbolic Metamaterials.
    Schulz KM; Vu H; Schwaiger S; Rottler A; Korn T; Sonnenberg D; Kipp T; Mendach S
    Phys Rev Lett; 2016 Aug; 117(8):085503. PubMed ID: 27588866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon nanoparticle superlattices as optical-frequency magnetic metamaterials.
    Alaeian H; Dionne JA
    Opt Express; 2012 Jul; 20(14):15781-96. PubMed ID: 22772268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of dielectric thickness on optical behavior and tunability of one-dimensional Ag/SiO₂ multilayered metamaterials.
    Pradhan SK; Xiao B; Skuza JR; Santiago K; Mundle R; Pradhan AK
    Opt Express; 2014 May; 22(10):12486-98. PubMed ID: 24921366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and magnetic properties of an InGaAs/Fe3Si superlattice in cylindrical geometry.
    Deneke Ch; Schumann J; Engelhard R; Thomas J; Müller C; Khatri MS; Malachias A; Weisser M; Metzger TH; Schmidt OG
    Nanotechnology; 2009 Jan; 20(4):045703. PubMed ID: 19417329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terahertz metamaterials based on arrays of rolled-up gold/(In)GaAs tubes.
    Rottler A; Bröll M; Gerken N; Heitmann D; Mendach S
    Opt Lett; 2011 Dec; 36(24):4797-9. PubMed ID: 22179887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-organized growth of three- dimensional quantum-Dot crystals with fcc-like stacking and a tunable lattice constant.
    Springholz G; Holy V; Pinczolits M; Bauer G
    Science; 1998 Oct; 282(5389):734-7. PubMed ID: 9784129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface Adhesion and Structural Characterization of Rolled-up GaAs/In
    Brick D; Engemaier V; Guo Y; Grossmann M; Li G; Grimm D; Schmidt OG; Schubert M; Gusev VE; Hettich M; Dekorsy T
    Sci Rep; 2017 Jul; 7(1):5385. PubMed ID: 28710450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers.
    He Y; Larsen GK; Ingram W; Zhao Y
    Nano Lett; 2014; 14(4):1976-81. PubMed ID: 24646023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-dependent Raman investigation of rolled up InGaAs/GaAs microtubes.
    Rodriguez RD; Sheremet E; Thurmer DJ; Lehmann D; Gordan OD; Seidel F; Milekhin A; Schmidt OG; Hietschold M; Zahn DR
    Nanoscale Res Lett; 2012 Oct; 7(1):594. PubMed ID: 23101911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable index metamaterials made by bottom-up approaches.
    Gómez-Castaño M; Zheng H; García-Pomar JL; Vallée R; Mihi A; Ravaine S
    Nanoscale Adv; 2019 Mar; 1(3):1070-1076. PubMed ID: 31304458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grating-structured metallic microsprings.
    Huang T; Liu Z; Huang G; Liu R; Mei Y
    Nanoscale; 2014 Aug; 6(16):9428-35. PubMed ID: 24728100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial.
    Lewandowski W; Fruhnert M; Mieczkowski J; Rockstuhl C; Górecka E
    Nat Commun; 2015 Mar; 6():6590. PubMed ID: 25779822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates.
    Han NR; Chen ZC; Lim CS; Ng B; Hong MH
    Opt Express; 2011 Apr; 19(8):6990-8. PubMed ID: 21503013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal superlattices for unnaturally high-index metamaterials at broadband optical frequencies.
    Lee S
    Opt Express; 2015 Nov; 23(22):28170-81. PubMed ID: 26561088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bottom-up assembly of colloidal gold and silver nanostructures for designable plasmonic structures and metamaterials.
    Gwo S; Lin MH; He CL; Chen HY; Teranishi T
    Langmuir; 2012 Jun; 28(24):8902-8. PubMed ID: 22372768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic field driven interminiband charge transfer in InGaAs/InP superlattices.
    Pusep YA; Tavares BG; Tito MA; dos Santos LF; LaPierre RR
    J Phys Condens Matter; 2015 Jun; 27(24):245601. PubMed ID: 26000711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rolled-up tubes and cantilevers by releasing SrRuO3-Pr0.7Ca0.3MnO3 nanomembranes.
    Deneke C; Wild E; Boldyreva K; Baunack S; Cendula P; Mönch I; Simon M; Malachias A; Dörr K; Schmidt OG
    Nanoscale Res Lett; 2011 Dec; 6(1):621. PubMed ID: 22151894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and optical properties of GaAs/InGaAs/GaAs nanowire core-multishell quantum well heterostructures.
    Yan X; Zhang X; Li J; Wu Y; Cui J; Ren X
    Nanoscale; 2015 Jan; 7(3):1110-5. PubMed ID: 25482135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands.
    Griebel M; Smet JH; Driscoll DC; Kuhl J; Diez CA; Freytag N; Kadow C; Gossard AC; Von Klitzing K
    Nat Mater; 2003 Feb; 2(2):122-6. PubMed ID: 12612698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.