BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 19519159)

  • 1. Evaluation of irritancy and sensitization potential of metalworking fluid mixtures and components.
    Anderson SE; Brown KK; Butterworth LF; Fedorowicz A; Jackson LG; Frasch HF; Beezhold D; Munson AE; Meade BJ
    J Immunotoxicol; 2009 Mar; 6(1):19-29. PubMed ID: 19519159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local lymph node assay: differentiating allergic and irritant responses using flow cytometry.
    Gerberick GF; Cruse LW; Ryan CA
    Methods; 1999 Sep; 19(1):48-55. PubMed ID: 10525437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the contact and respiratory sensitization potential of volatile organic compounds generated by simulated indoor air chemistry.
    Anderson SE; Wells J; Fedorowicz A; Butterworth LF; Meade B; Munson AE
    Toxicol Sci; 2007 Jun; 97(2):355-63. PubMed ID: 17347135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of vehicle on the relative potency of skin-sensitizing chemicals in the local lymph node assay.
    Jowsey IR; Clapp CJ; Safford B; Gibbons BT; Basketter DA
    Cutan Ocul Toxicol; 2008; 27(2):67-75. PubMed ID: 18568891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased cell proliferation in spleen and lymph nodes peripheral to contact allergen application site.
    Chipinda I; Anderson SE; Butterworth LF; Beezhold D; Siegel PD
    Toxicology; 2009 Mar; 257(3):113-6. PubMed ID: 19150643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of differential gene expression in auricular lymph nodes draining skin exposed to sensitizers and irritants.
    Ku HO; Jeong SH; Kang HG; Pyo HM; Cho JH; Son SW; Ryu DY
    Toxicol Lett; 2008 Feb; 177(1):1-9. PubMed ID: 18242016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular expression of cytokines and granzyme B in auricular lymph nodes draining skin exposed to irritants and sensitizers.
    Ku HO; Jeong SH; Kang HG; Pyo HM; Cho JH; Son SW; Kim HR; Lee KJ; Ryu DY
    Toxicology; 2008 Sep; 250(2-3):116-23. PubMed ID: 18652873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro dermal penetration of 4-chloro-3-methylphenol from commercial metal working fluid and aqueous vehicles.
    Frasch HF; Zang LY; Barbero AM; Anderson SE
    J Toxicol Environ Health A; 2010; 73(20):1394-405. PubMed ID: 20818538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrocarbon-based weapons maintenance compounds produce evidence of contact hypersensitivity in BALB/c mice.
    Arfsten DP; Azadi S; Butterworth LF; Meade BJ
    Cutan Ocul Toxicol; 2006; 25(3):185-94. PubMed ID: 16980244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local lymph node assay (LLNA) for detection of sensitization capacity of chemicals.
    Gerberick GF; Ryan CA; Dearman RJ; Kimber I
    Methods; 2007 Jan; 41(1):54-60. PubMed ID: 16938465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validity of methods to predict the respiratory sensitizing potential of chemicals: A study with a piperidinyl chlorotriazine derivative that caused an outbreak of occupational asthma.
    Vanoirbeek JA; Mandervelt C; Cunningham AR; Hoet PH; Xu H; Vanhooren HM; Nemery B
    Toxicol Sci; 2003 Dec; 76(2):338-46. PubMed ID: 14514965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of an ex vivo local lymph node assay to assess contact hypersensitivity potential.
    Piccotti JR; Kawabata TT
    J Immunotoxicol; 2008 Jul; 5(3):271-7. PubMed ID: 18830887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the sensitization potential of persulfate salts used for bleaching hair.
    Cruz MJ; De Vooght V; Muñoz X; Hoet PH; Morell F; Nemery B; Vanoirbeek JA
    Contact Dermatitis; 2009 Feb; 60(2):85-90. PubMed ID: 19207378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local lymph node assay (LLNA): comparison of different protocols by testing skin-sensitizing epoxy resin system components.
    Gamer AO; Nies E; Vohr HW
    Regul Toxicol Pharmacol; 2008 Dec; 52(3):290-8. PubMed ID: 18824053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contact and respiratory sensitizers can be identified by cytokine profiles following inhalation exposure.
    De Jong WH; Arts JH; De Klerk A; Schijf MA; Ezendam J; Kuper CF; Van Loveren H
    Toxicology; 2009 Jul; 261(3):103-11. PubMed ID: 19422874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Irritancy and sensitization potential of glyoxylic acid.
    Anderson SE; Ham JE; Munson AE
    J Immunotoxicol; 2008 Apr; 5(2):93-8. PubMed ID: 18569377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel approach for classifying chemicals according to skin sensitizing potency by non-radioisotopic modification of the local lymph node assay.
    Takeyoshi M; Iida K; Shiraishi K; Hoshuyama S
    J Appl Toxicol; 2005; 25(2):129-34. PubMed ID: 15744759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of the ex vivo LLNA: BrdU-ELISA to distinguish the sensitizers from irritants in respect of 3 end points-lymphocyte proliferation, ear swelling, and cytokine profiles.
    Arancioglu S; Ulker OC; Karakaya A
    Int J Toxicol; 2015; 34(1):24-30. PubMed ID: 25563296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive identification of human skin sensitization thresholds.
    Basketter DA; Clapp C; Jefferies D; Safford B; Ryan CA; Gerberick F; Dearman RJ; Kimber I
    Contact Dermatitis; 2005 Nov; 53(5):260-7. PubMed ID: 16283904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divergent immunological responses following glutaraldehyde exposure.
    Azadi S; Klink KJ; Meade BJ
    Toxicol Appl Pharmacol; 2004 May; 197(1):1-8. PubMed ID: 15126069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.