These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 19519225)

  • 1. Plasticity of the muscle proteome to exercise at altitude.
    Flueck M
    High Alt Med Biol; 2009; 10(2):183-93. PubMed ID: 19519225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: Lessons from AltitudeOmics.
    Chicco AJ; Le CH; Gnaiger E; Dreyer HC; Muyskens JB; D'Alessandro A; Nemkov T; Hocker AD; Prenni JE; Wolfe LM; Sindt NM; Lovering AT; Subudhi AW; Roach RC
    J Biol Chem; 2018 May; 293(18):6659-6671. PubMed ID: 29540485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle tissue adaptations to hypoxia.
    Hoppeler H; Vogt M
    J Exp Biol; 2001 Sep; 204(Pt 18):3133-9. PubMed ID: 11581327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle hypoxia-inducible factor-1 and exercise.
    Lindholm ME; Rundqvist H
    Exp Physiol; 2016 Jan; 101(1):28-32. PubMed ID: 26391197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human skeletal muscle and erythrocyte proteins involved in acid-base homeostasis: adaptations to chronic hypoxia.
    Juel C; Lundby C; Sander M; Calbet JA; Hall Gv
    J Physiol; 2003 Apr; 548(Pt 2):639-48. PubMed ID: 12611920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General introduction to altitude adaptation and mountain sickness.
    Bärtsch P; Saltin B
    Scand J Med Sci Sports; 2008 Aug; 18 Suppl 1():1-10. PubMed ID: 18665947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle adaptation to altitude: tissue capillarity and capacity for aerobic metabolism.
    Mathieu-Costello O
    High Alt Med Biol; 2001; 2(3):413-25. PubMed ID: 11682021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myocellular limitations of human performance and their modification through genome-dependent responses at altitude.
    Flueck M
    Exp Physiol; 2010 Mar; 95(3):451-62. PubMed ID: 19897567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twenty-eight days at 3454-m altitude diminishes respiratory capacity but enhances efficiency in human skeletal muscle mitochondria.
    Jacobs RA; Siebenmann C; Hug M; Toigo M; Meinild AK; Lundby C
    FASEB J; 2012 Dec; 26(12):5192-200. PubMed ID: 22968913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of hypoxia on muscular performance capacity: "living low--training high"].
    Vogt M; Billeter R; Hoppeler H
    Ther Umsch; 2003 Jul; 60(7):419-24. PubMed ID: 12956036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic adjustment to high-altitude hypoxia: from genetic signals to physiological implications.
    Murray AJ; Montgomery HE; Feelisch M; Grocott MPW; Martin DS
    Biochem Soc Trans; 2018 Jun; 46(3):599-607. PubMed ID: 29678953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle bioenergetics and metabolic control at altitude.
    Cerretelli P; Marzorati M; Marconi C
    High Alt Med Biol; 2009; 10(2):165-74. PubMed ID: 19480606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscular adaptations at extreme altitude: metabolic implications during exercise.
    Green HJ
    Int J Sports Med; 1992 Oct; 13 Suppl 1():S163-5. PubMed ID: 1483762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of skeletal muscle mitochondria to hypoxia.
    Hoppeler H; Vogt M; Weibel ER; Flück M
    Exp Physiol; 2003 Jan; 88(1):109-19. PubMed ID: 12525860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hypoxia at different life stages on locomotory muscle phenotype in deer mice native to high altitudes.
    Nikel KE; Shanishchara NK; Ivy CM; Dawson NJ; Scott GR
    Comp Biochem Physiol B Biochem Mol Biol; 2018 Oct; 224():98-104. PubMed ID: 29175484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performing at extreme altitude: muscle cellular and subcellular adaptations.
    Howald H; Hoppeler H
    Eur J Appl Physiol; 2003 Oct; 90(3-4):360-4. PubMed ID: 12898262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial function in human skeletal muscle following high-altitude exposure.
    Jacobs RA; Boushel R; Wright-Paradis C; Calbet JA; Robach P; Gnaiger E; Lundby C
    Exp Physiol; 2013 Jan; 98(1):245-55. PubMed ID: 22636256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acclimatization of skeletal muscle mitochondria to high-altitude hypoxia during an ascent of Everest.
    Levett DZ; Radford EJ; Menassa DA; Graber EF; Morash AJ; Hoppeler H; Clarke K; Martin DS; Ferguson-Smith AC; Montgomery HE; Grocott MP; Murray AJ;
    FASEB J; 2012 Apr; 26(4):1431-41. PubMed ID: 22186874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Training high--living low: changes of aerobic performance and muscle structure with training at simulated altitude.
    Geiser J; Vogt M; Billeter R; Zuleger C; Belforti F; Hoppeler H
    Int J Sports Med; 2001 Nov; 22(8):579-85. PubMed ID: 11719893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exercise economy does not change after acclimatization to moderate to very high altitude.
    Lundby C; Calbet JA; Sander M; van Hall G; Mazzeo RS; Stray-Gundersen J; Stager JM; Chapman RF; Saltin B; Levine BD
    Scand J Med Sci Sports; 2007 Jun; 17(3):281-91. PubMed ID: 17501869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.