These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 19519225)

  • 21. Do high-altitude natives have enhanced exercise performance at altitude?
    Brutsaert TD
    Appl Physiol Nutr Metab; 2008 Jun; 33(3):582-92. PubMed ID: 18461115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy metabolism and the high-altitude environment.
    Murray AJ
    Exp Physiol; 2016 Jan; 101(1):23-7. PubMed ID: 26315373
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hypoxia-related gene expression in porcine skeletal muscle tissues at different altitude.
    Zhang J; Chen L; Long KR; Mu ZP
    Genet Mol Res; 2015 Sep; 14(3):11587-93. PubMed ID: 26436399
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic variation in HIF signaling underlies quantitative variation in physiological and life-history traits within lowland butterfly populations.
    Marden JH; Fescemyer HW; Schilder RJ; Doerfler WR; Vera JC; Wheat CW
    Evolution; 2013 Apr; 67(4):1105-15. PubMed ID: 23550759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cardiometabolic risk factors in native populations living at high altitudes.
    Hirschler V
    Int J Clin Pract; 2016 Feb; 70(2):113-8. PubMed ID: 26820389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Nuclear Receptor Nor-1 Is a Pleiotropic Regulator of Exercise-Induced Adaptations.
    Pearen MA; Muscat GEO
    Exerc Sport Sci Rev; 2018 Apr; 46(2):97-104. PubMed ID: 29346164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Muscle Protein Turnover and the Molecular Regulation of Muscle Mass during Hypoxia.
    Pasiakos SM; Berryman CE; Carrigan CT; Young AJ; Carbone JW
    Med Sci Sports Exerc; 2017 Jul; 49(7):1340-1350. PubMed ID: 28166119
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 2-D DIGE analysis of the mitochondrial proteome from human skeletal muscle reveals time course-dependent remodelling in response to 14 consecutive days of endurance exercise training.
    Egan B; Dowling P; O'Connor PL; Henry M; Meleady P; Zierath JR; O'Gorman DJ
    Proteomics; 2011 Apr; 11(8):1413-28. PubMed ID: 21360670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasticity of skeletal muscle mitochondria: structure and function.
    Hoppeler H; Fluck M
    Med Sci Sports Exerc; 2003 Jan; 35(1):95-104. PubMed ID: 12544642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic basis to Sherpa altitude adaptation.
    Horscroft JA; Kotwica AO; Laner V; West JA; Hennis PJ; Levett DZH; Howard DJ; Fernandez BO; Burgess SL; Ament Z; Gilbert-Kawai ET; Vercueil A; Landis BD; Mitchell K; Mythen MG; Branco C; Johnson RS; Feelisch M; Montgomery HE; Griffin JL; Grocott MPW; Gnaiger E; Martin DS; Murray AJ
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6382-6387. PubMed ID: 28533386
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteins modulation in human skeletal muscle in the early phase of adaptation to hypobaric hypoxia.
    Viganò A; Ripamonti M; De Palma S; Capitanio D; Vasso M; Wait R; Lundby C; Cerretelli P; Gelfi C
    Proteomics; 2008 Nov; 8(22):4668-79. PubMed ID: 18937252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TNF-α-induced NF-κB activation stimulates skeletal muscle glycolytic metabolism through activation of HIF-1α.
    Remels AH; Gosker HR; Verhees KJ; Langen RC; Schols AM
    Endocrinology; 2015 May; 156(5):1770-81. PubMed ID: 25710281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resistance exercise and the mechanisms of muscle mass regulation in humans: acute effects on muscle protein turnover and the gaps in our understanding of chronic resistance exercise training adaptation.
    Murton AJ; Greenhaff PL
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2209-14. PubMed ID: 23872221
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptive Modifications of Muscle Phenotype in High-Altitude Deer Mice Are Associated with Evolved Changes in Gene Regulation.
    Scott GR; Elogio TS; Lui MA; Storz JF; Cheviron ZA
    Mol Biol Evol; 2015 Aug; 32(8):1962-76. PubMed ID: 25851956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Skeletal muscle protein synthesis after active or passive ascent to high altitude.
    Imoberdorf R; Garlick PJ; McNurlan MA; Casella GA; Marini JC; Turgay M; Bärtsch P; Ballmer PE
    Med Sci Sports Exerc; 2006 Jun; 38(6):1082-7. PubMed ID: 16775549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Skeletal muscle hypertrophy after aerobic exercise training.
    Konopka AR; Harber MP
    Exerc Sport Sci Rev; 2014 Apr; 42(2):53-61. PubMed ID: 24508740
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Skeletal muscle adaptations to prolonged exposure to extreme altitude: a role of physical activity?
    Mizuno M; Savard GK; Areskog NH; Lundby C; Saltin B
    High Alt Med Biol; 2008; 9(4):311-7. PubMed ID: 19115916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in muscle proteomics in the course of the Caudwell Research Expedition to Mt. Everest.
    Levett DZ; Viganò A; Capitanio D; Vasso M; De Palma S; Moriggi M; Martin DS; Murray AJ; Cerretelli P; Grocott MP; Gelfi C
    Proteomics; 2015 Jan; 15(1):160-71. PubMed ID: 25370915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Skeletal muscle: microcirculatory adaptation to metabolic demand.
    Hepple RT
    Med Sci Sports Exerc; 2000 Jan; 32(1):117-23. PubMed ID: 10647538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of exposure to a simulated altitude of 5500 m on energy metabolic pathways in rats.
    Ou LC; Leiter JC
    Respir Physiol Neurobiol; 2004 Jul; 141(1):59-71. PubMed ID: 15234676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.