These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 19519225)

  • 41. Physiological responses to exercise at altitude : an update.
    Mazzeo RS
    Sports Med; 2008; 38(1):1-8. PubMed ID: 18081363
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nervous system function during exercise in hypoxia.
    Amann M; Kayser B
    High Alt Med Biol; 2009; 10(2):149-64. PubMed ID: 19555297
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli.
    Flück M
    J Exp Biol; 2006 Jun; 209(Pt 12):2239-48. PubMed ID: 16731801
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assessment of skeletal muscle proteolysis and the regulatory response to nutrition and exercise.
    Pasiakos SM; Carbone JW
    IUBMB Life; 2014 Jul; 66(7):478-84. PubMed ID: 25052691
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantitative and qualitative adaptation of human skeletal muscle mitochondria to hypoxic compared with normoxic training at the same relative work rate.
    Bakkman L; Sahlin K; Holmberg HC; Tonkonogi M
    Acta Physiol (Oxf); 2007 Jul; 190(3):243-51. PubMed ID: 17521315
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mitochondrial function at extreme high altitude.
    Murray AJ; Horscroft JA
    J Physiol; 2016 Mar; 594(5):1137-49. PubMed ID: 26033622
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chronic hypoxia: common traits between chronic obstructive pulmonary disease and altitude.
    Raguso CA; Guinot SL; Janssens JP; Kayser B; Pichard C
    Curr Opin Clin Nutr Metab Care; 2004 Jul; 7(4):411-7. PubMed ID: 15192444
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Raising Ca2+ in L6 myotubes mimics effects of exercise on mitochondrial biogenesis in muscle.
    Ojuka EO; Jones TE; Han DH; Chen M; Holloszy JO
    FASEB J; 2003 Apr; 17(6):675-81. PubMed ID: 12665481
    [TBL] [Abstract][Full Text] [Related]  

  • 49. New aspects of altitude adaptation in Tibetans: a proteomic approach.
    Gelfi C; De Palma S; Ripamonti M; Eberini I; Wait R; Bajracharya A; Marconi C; Schneider A; Hoppeler H; Cerretelli P
    FASEB J; 2004 Mar; 18(3):612-4. PubMed ID: 14734630
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of haemoglobin mass on VO(2)max following normobaric 'live high-train low' in endurance-trained athletes.
    Robach P; Siebenmann C; Jacobs RA; Rasmussen P; Nordsborg N; Pesta D; Gnaiger E; Díaz V; Christ A; Fiedler J; Crivelli N; Secher NH; Pichon A; Maggiorini M; Lundby C
    Br J Sports Med; 2012 Sep; 46(11):822-7. PubMed ID: 22790809
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced Protein Translation Underlies Improved Metabolic and Physical Adaptations to Different Exercise Training Modes in Young and Old Humans.
    Robinson MM; Dasari S; Konopka AR; Johnson ML; Manjunatha S; Esponda RR; Carter RE; Lanza IR; Nair KS
    Cell Metab; 2017 Mar; 25(3):581-592. PubMed ID: 28273480
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Muscle structural modifications in hypoxia.
    Hoppeler H; Desplanches D
    Int J Sports Med; 1992 Oct; 13 Suppl 1():S166-8. PubMed ID: 1483763
    [TBL] [Abstract][Full Text] [Related]  

  • 54. AMPKα is essential for acute exercise-induced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle.
    Fentz J; Kjøbsted R; Kristensen CM; Hingst JR; Birk JB; Gudiksen A; Foretz M; Schjerling P; Viollet B; Pilegaard H; Wojtaszewski JF
    Am J Physiol Endocrinol Metab; 2015 Dec; 309(11):E900-14. PubMed ID: 26419588
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Electron microscope study of skeletal muscle fibers during physical exercise in high-altitude hypoxia].
    Shmerling MD; Filiushina EE; Buzueva II
    Biull Eksp Biol Med; 1982 Nov; 94(11):119-22. PubMed ID: 7150723
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cellular and molecular responses of human skeletal muscle exposed to hypoxic environment.
    Mancinelli R; Pietrangelo T; La Rovere R; Toniolo L; Fanò G; Reggiani C; Fulle S
    J Biol Regul Homeost Agents; 2011; 25(4):635-45. PubMed ID: 22217995
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Training in hypoxia: detrimental for muscular aerobic capacity?
    Friedmann B
    Acta Physiol (Oxf); 2007 Jul; 190(3):177. PubMed ID: 17581133
    [No Abstract]   [Full Text] [Related]  

  • 58. Skeletal muscle proteome analysis provides insights on high altitude adaptation of yaks.
    Wen W; Zhao Z; Li R; Guan J; Zhou Z; Luo X; Suman SP; Sun Q
    Mol Biol Rep; 2019 Jun; 46(3):2857-2866. PubMed ID: 30982215
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms.
    Zoladz JA; Korzeniewski B; Grassi B
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():67-84. PubMed ID: 17242492
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adaptive increases in respiratory capacity and O
    Dawson NJ; Scott GR
    FASEB J; 2022 Jul; 36(7):e22391. PubMed ID: 35661419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.