These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19519487)

  • 1. A review of MED-SuMo applications.
    Doppelt-Azeroual O; Moriaud F; Adcock SA; Delfaud F
    Infect Disord Drug Targets; 2009 Jun; 9(3):344-57. PubMed ID: 19519487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational resources for protein modelling and drug discovery applications.
    Dhaliwal B; Chen YW
    Infect Disord Drug Targets; 2009 Nov; 9(5):557-62. PubMed ID: 19594423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and automated functional classification with MED-SuMo: an application on purine-binding proteins.
    Doppelt-Azeroual O; Delfaud F; Moriaud F; de Brevern AG
    Protein Sci; 2010 Apr; 19(4):847-67. PubMed ID: 20162627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free resources to assist structure-based virtual ligand screening experiments.
    Villoutreix BO; Renault N; Lagorce D; Sperandio O; Montes M; Miteva MA
    Curr Protein Pept Sci; 2007 Aug; 8(4):381-411. PubMed ID: 17696871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational fragment-based approach at PDB scale by protein local similarity.
    Moriaud F; Doppelt-Azeroual O; Martin L; Oguievetskaia K; Koch K; Vorotyntsev A; Adcock SA; Delfaud F
    J Chem Inf Model; 2009 Feb; 49(2):280-94. PubMed ID: 19434830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identify drug repurposing candidates by mining the protein data bank.
    Moriaud F; Richard SB; Adcock SA; Chanas-Martin L; Surgand JS; Ben Jelloul M; Delfaud F
    Brief Bioinform; 2011 Jul; 12(4):336-40. PubMed ID: 21768131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational tools for the analysis and visualization of multiple protein-ligand complexes.
    O'Brien SE; Brown DG; Mills JE; Phillips C; Morris G
    J Mol Graph Model; 2005 Dec; 24(3):186-94. PubMed ID: 16169759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational fragment-based drug design to explore the hydrophobic sub-pocket of the mitotic kinesin Eg5 allosteric binding site.
    Oguievetskaia K; Martin-Chanas L; Vorotyntsev A; Doppelt-Azeroual O; Brotel X; Adcock SA; de Brevern AG; Delfaud F; Moriaud F
    J Comput Aided Mol Des; 2009 Aug; 23(8):571-82. PubMed ID: 19533373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From drug target to leads--sketching a physicochemical pathway for lead molecule design in silico.
    Shaikh SA; Jain T; Sandhu G; Latha N; Jayaram B
    Curr Pharm Des; 2007; 13(34):3454-70. PubMed ID: 18220783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping drug-target interaction networks.
    Tian L; Zhang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2336-9. PubMed ID: 19965180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-Protein Docking in Drug Design and Discovery.
    Kaczor AA; Bartuzi D; Stępniewski TM; Matosiuk D; Selent J
    Methods Mol Biol; 2018; 1762():285-305. PubMed ID: 29594778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug-Target Interactions: Prediction Methods and Applications.
    Anusuya S; Kesherwani M; Priya KV; Vimala A; Shanmugam G; Velmurugan D; Gromiha MM
    Curr Protein Pept Sci; 2018; 19(6):537-561. PubMed ID: 27829350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SERAPhiC: a benchmark for in silico fragment-based drug design.
    Favia AD; Bottegoni G; Nobeli I; Bisignano P; Cavalli A
    J Chem Inf Model; 2011 Nov; 51(11):2882-96. PubMed ID: 21936510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-based drug design: docking and scoring.
    Kroemer RT
    Curr Protein Pept Sci; 2007 Aug; 8(4):312-28. PubMed ID: 17696866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein structure and computational drug discovery.
    Nero TL; Parker MW; Morton CJ
    Biochem Soc Trans; 2018 Oct; 46(5):1367-1379. PubMed ID: 30242117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Docking and scoring in virtual screening for drug discovery: methods and applications.
    Kitchen DB; Decornez H; Furr JR; Bajorath J
    Nat Rev Drug Discov; 2004 Nov; 3(11):935-49. PubMed ID: 15520816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A large-scale computational approach to drug repositioning.
    Li YY; An J; Jones SJ
    Genome Inform; 2006; 17(2):239-47. PubMed ID: 17503396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Methods Used in Hit-to-Lead and Lead Optimization Stages of Structure-Based Drug Discovery.
    Heifetz A; Southey M; Morao I; Townsend-Nicholson A; Bodkin MJ
    Methods Mol Biol; 2018; 1705():375-394. PubMed ID: 29188574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.