These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19519559)

  • 1. Modulators of voltage-dependent calcium channels for the treatment of nervous system diseases.
    Takahashi E; Niimi K
    Recent Pat CNS Drug Discov; 2009 Jun; 4(2):96-111. PubMed ID: 19519559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small Molecules as Modulators of Voltage-Gated Calcium Channels in Neurological Disorders: State of the Art and Perspectives.
    Lanzetti S; Di Biase V
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting voltage-gated calcium channels in neurological and psychiatric diseases.
    Zamponi GW
    Nat Rev Drug Discov; 2016 Jan; 15(1):19-34. PubMed ID: 26542451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological modulators of voltage-gated calcium channels and their therapeutical application.
    Kochegarov AA
    Cell Calcium; 2003 Mar; 33(3):145-62. PubMed ID: 12600802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. L-type voltage-dependent calcium channels as therapeutic targets for neurodegenerative diseases.
    Yagami T; Kohma H; Yamamoto Y
    Curr Med Chem; 2012; 19(28):4816-27. PubMed ID: 22834820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium channels involved in synaptic transmission at the mature and regenerating mouse neuromuscular junction.
    Katz E; Ferro PA; Weisz G; Uchitel OD
    J Physiol; 1996 Dec; 497 ( Pt 3)(Pt 3):687-97. PubMed ID: 9003554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Voltage-dependent Ca2+ channels].
    Kurihara T; Tanabe T
    Tanpakushitsu Kakusan Koso; 1998 Sep; 43(12 Suppl):1579-88. PubMed ID: 9788156
    [No Abstract]   [Full Text] [Related]  

  • 8. Recent patents on calcium channel blockers: emphasis on CNS diseases.
    Arranz-Tagarro JA; de los Ríos C; García AG; Padín JF
    Expert Opin Ther Pat; 2014 Sep; 24(9):959-77. PubMed ID: 25118673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre- and postsynaptic contributions of voltage-dependent Ca2+ channels to nociceptive transmission in rat spinal lamina I neurons.
    Heinke B; Balzer E; Sandkühler J
    Eur J Neurosci; 2004 Jan; 19(1):103-11. PubMed ID: 14750968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential Ca2+-dependence of transmitter release mediated by P/Q- and N-type calcium channels at neonatal rat neuromuscular junctions.
    Rosato-Siri MD; Piriz J; Tropper BA; Uchitel OD
    Eur J Neurosci; 2002 Jun; 15(12):1874-80. PubMed ID: 12099893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of Cyclin-dependent kinase 5 on voltage-dependent calcium channels in PC12 cells varies according to channel type and cell differentiation state.
    Furusawa K; Asada A; Saito T; Hisanaga S
    J Neurochem; 2014 Aug; 130(4):498-506. PubMed ID: 24766160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobility of calcium channels in the presynaptic membrane.
    Schneider R; Hosy E; Kohl J; Klueva J; Choquet D; Thomas U; Voigt A; Heine M
    Neuron; 2015 May; 86(3):672-9. PubMed ID: 25892305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+ channel subtypes and pharmacology in the kidney.
    Hayashi K; Wakino S; Sugano N; Ozawa Y; Homma K; Saruta T
    Circ Res; 2007 Feb; 100(3):342-53. PubMed ID: 17307972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The organ-protective effect of N-type Ca(2+) channel blockade.
    Kuwahara K; Kimura T
    Pharmacol Ther; 2015 Jul; 151():1-7. PubMed ID: 25659931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological identification of two types of presynaptic voltage-dependent calcium channels at CA3-CA1 synapses of the hippocampus.
    Wu LG; Saggau P
    J Neurosci; 1994 Sep; 14(9):5613-22. PubMed ID: 8083757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-Dependent Calcium Channels, Calcium Binding Proteins, and Their Interaction in the Pathological Process of Epilepsy.
    Xu JH; Tang FR
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30213136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The alpha2delta subunit of the voltage-dependent calcium channel. A new pharmaceutical target for psychiatry and neurology].
    Wedekind D; Bandelow B
    Nervenarzt; 2005 Jul; 76(7):888-91. PubMed ID: 15952008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antagonists of neuronal calcium channels: structure, function, and therapeutic implications.
    Miljanich GP; Ramachandran J
    Annu Rev Pharmacol Toxicol; 1995; 35():707-34. PubMed ID: 7598513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-L-type voltage-dependent calcium channels control vascular tone of the rat basilar artery.
    Navarro-Gonzalez MF; Grayson TH; Meaney KR; Cribbs LL; Hill CE
    Clin Exp Pharmacol Physiol; 2009 Jan; 36(1):55-66. PubMed ID: 18759855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxins targeting voltage-activated Ca2+ channels and their potential biomedical applications.
    Gandini MA; Sandoval A; Felix R
    Curr Top Med Chem; 2015; 15(7):604-16. PubMed ID: 25714378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.