BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19519768)

  • 1. Multiple roles of TorD-like chaperones in the biogenesis of molybdoenzymes.
    Genest O; Méjean V; Iobbi-Nivol C
    FEMS Microbiol Lett; 2009 Aug; 297(1):1-9. PubMed ID: 19519768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial molybdoenzymes: old enzymes for new purposes.
    Leimkühler S; Iobbi-Nivol C
    FEMS Microbiol Rev; 2016 Jan; 40(1):1-18. PubMed ID: 26468212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chaperone protection of immature molybdoenzyme during molybdenum cofactor limitation.
    Genest O; Seduk F; Théraulaz L; Méjean V; Iobbi-Nivol C
    FEMS Microbiol Lett; 2006 Dec; 265(1):51-5. PubMed ID: 17107419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaperones in maturation of molybdoenzymes: Why specific is better than general?
    Lemaire ON; Bouillet S; Méjean V; Iobbi-Nivol C; Genest O
    Bioengineered; 2017 Mar; 8(2):133-136. PubMed ID: 27580420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dedicated metallochaperone connects apoenzyme and molybdenum cofactor biosynthesis components.
    Genest O; Neumann M; Seduk F; Stöcklein W; Méjean V; Leimkühler S; Iobbi-Nivol C
    J Biol Chem; 2008 Aug; 283(31):21433-40. PubMed ID: 18522945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quality control of a molybdoenzyme by the Lon protease.
    Redelberger D; Genest O; Arabet D; Méjean V; Ilbert M; Iobbi-Nivol C
    FEBS Lett; 2013 Dec; 587(24):3935-42. PubMed ID: 24211448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The regulation of Moco biosynthesis and molybdoenzyme gene expression by molybdenum and iron in bacteria.
    Zupok A; Iobbi-Nivol C; Méjean V; Leimkühler S
    Metallomics; 2019 Oct; 11(10):1602-1624. PubMed ID: 31517366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secretion of both partially unfolded and folded apoproteins of dimethyl sulfoxide reductase by spheroplasts from a molybdenum cofactor-deficient mutant of Rhodobacter sphaeroides f. sp. denitrificans.
    Masui H; Satoh M; Satoh T
    J Bacteriol; 1994 Mar; 176(6):1624-9. PubMed ID: 8132456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biology of the molybdenum cofactor.
    Mendel RR
    J Exp Bot; 2007; 58(9):2289-96. PubMed ID: 17351249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical, stabilization and crystallization studies on a molecular chaperone (PaoD) involved in the maturation of molybdoenzymes.
    Otrelo-Cardoso AR; Schwuchow V; Rodrigues D; Cabrita EJ; Leimkühler S; Romão MJ; Santos-Silva T
    PLoS One; 2014; 9(1):e87295. PubMed ID: 24498065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DmsD, a Tat system specific chaperone, interacts with other general chaperones and proteins involved in the molybdenum cofactor biosynthesis.
    Li H; Chang L; Howell JM; Turner RJ
    Biochim Biophys Acta; 2010 Jun; 1804(6):1301-9. PubMed ID: 20153451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metal ions inhibit molybdoenzyme activity by binding to the dithiolene moiety of molybdopterin in Escherichia coli.
    Neumann M; Leimkühler S
    FEBS J; 2008 Nov; 275(22):5678-89. PubMed ID: 18959753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhodobacter capsulatus XdhC is involved in molybdenum cofactor binding and insertion into xanthine dehydrogenase.
    Neumann M; Schulte M; Jünemann N; Stöcklein W; Leimkühler S
    J Biol Chem; 2006 Jun; 281(23):15701-8. PubMed ID: 16597619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly pathway of a bacterial complex iron sulfur molybdoenzyme.
    Cherak SJ; Turner RJ
    Biomol Concepts; 2017 Sep; 8(3-4):155-167. PubMed ID: 28688222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sterile alpha-motif domain in NafY targets apo-NifDK for iron-molybdenum cofactor delivery via a tethered domain.
    Hernandez JA; Phillips AH; Erbil WK; Zhao D; Demuez M; Zeymer C; Pelton JG; Wemmer DE; Rubio LM
    J Biol Chem; 2011 Feb; 286(8):6321-8. PubMed ID: 21156797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of overexpression of a chaperone protein of steroid C25 dehydrogenase for biochemical and biophysical characterization.
    Niedzialkowska E; Mrugała B; Rugor A; Czub MP; Skotnicka A; Cotelesage JJH; George GN; Szaleniec M; Minor W; Lewiński K
    Protein Expr Purif; 2017 Jun; 134():47-62. PubMed ID: 28343996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional and structural analysis of members of the TorD family, a large chaperone family dedicated to molybdoproteins.
    Ilbert M; Méjean V; Iobbi-Nivol C
    Microbiology (Reading); 2004 Apr; 150(Pt 4):935-943. PubMed ID: 15073303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and multiple molecular forms of TorD from Shewanella massilia, the putative chaperone of the molybdoenzyme TorA.
    Tranier S; Mortier-Barrière I; Ilbert M; Birck C; Iobbi-Nivol C; Méjean V; Samama JP
    Protein Sci; 2002 Sep; 11(9):2148-57. PubMed ID: 12192070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal peptide protection by specific chaperone.
    Genest O; Seduk F; Ilbert M; Méjean V; Iobbi-Nivol C
    Biochem Biophys Res Commun; 2006 Jan; 339(3):991-5. PubMed ID: 16337610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TorD, a cytoplasmic chaperone that interacts with the unfolded trimethylamine N-oxide reductase enzyme (TorA) in Escherichia coli.
    Pommier J; Méjean V; Giordano G; Iobbi-Nivol C
    J Biol Chem; 1998 Jun; 273(26):16615-20. PubMed ID: 9632735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.