BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19520088)

  • 1. Structural and functional divergence within the Dim1/KsgA family of rRNA methyltransferases.
    Pulicherla N; Pogorzala LA; Xu Z; O Farrell HC; Musayev FN; Scarsdale JN; Sia EA; Culver GM; Rife JP
    J Mol Biol; 2009 Sep; 391(5):884-93. PubMed ID: 19520088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into synthesis and function of KsgA/Dim1-dependent rRNA modifications in archaea.
    Knüppel R; Trahan C; Kern M; Wagner A; Grünberger F; Hausner W; Quax TEF; Albers SV; Oeffinger M; Ferreira-Cerca S
    Nucleic Acids Res; 2021 Feb; 49(3):1662-1687. PubMed ID: 33434266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a Plasmodium falciparum rRNA methyltransferase.
    Gupta K; Gupta A; Habib S
    Mol Biochem Parasitol; 2018 Jul; 223():13-18. PubMed ID: 29909066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The DIM1 gene responsible for the conserved m6(2)Am6(2)A dimethylation in the 3'-terminal loop of 18 S rRNA is essential in yeast.
    Lafontaine D; Delcour J; Glasser AL; Desgrès J; Vandenhaute J
    J Mol Biol; 1994 Aug; 241(3):492-7. PubMed ID: 8064863
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Kaiser M; Hacker C; Duchardt-Ferner E; Wöhnert J
    Biomol NMR Assign; 2019 Oct; 13(2):309-314. PubMed ID: 31069720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of a complex substrate by the KsgA/Dim1 family of enzymes has been conserved throughout evolution.
    O'Farrell HC; Pulicherla N; Desai PM; Rife JP
    RNA; 2006 May; 12(5):725-33. PubMed ID: 16540698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis of successive adenosine modifications by the conserved ribosomal methyltransferase KsgA.
    Stephan NC; Ries AB; Boehringer D; Ban N
    Nucleic Acids Res; 2021 Jun; 49(11):6389-6398. PubMed ID: 34086932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of KsgA, a universally conserved rRNA adenine dimethyltransferase in Escherichia coli.
    O'Farrell HC; Scarsdale JN; Rife JP
    J Mol Biol; 2004 May; 339(2):337-53. PubMed ID: 15136037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of adenosine-based ligands to the MjDim1 rRNA methyltransferase: implications for reaction mechanism and drug design.
    O'Farrell HC; Musayev FN; Scarsdale JN; Rife JP
    Biochemistry; 2010 Mar; 49(12):2697-704. PubMed ID: 20163168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence and structural evolution of the KsgA/Dim1 methyltransferase family.
    O'Farrell HC; Xu Z; Culver GM; Rife JP
    BMC Res Notes; 2008 Oct; 1():108. PubMed ID: 18959795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed mutants of 16S rRNA reveal important RNA domains for KsgA function and 30S subunit assembly.
    Desai PM; Culver GM; Rife JP
    Biochemistry; 2011 Feb; 50(5):854-63. PubMed ID: 21142019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The chlamydial functional homolog of KsgA confers kasugamycin sensitivity to Chlamydia trachomatis and impacts bacterial fitness.
    Binet R; Maurelli AT
    BMC Microbiol; 2009 Dec; 9():279. PubMed ID: 20043826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into methyltransferase KsgA function in 30S ribosomal subunit biogenesis.
    Boehringer D; O'Farrell HC; Rife JP; Ban N
    J Biol Chem; 2012 Mar; 287(13):10453-10459. PubMed ID: 22308031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA.
    Connolly K; Rife JP; Culver G
    Mol Microbiol; 2008 Dec; 70(5):1062-75. PubMed ID: 18990185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of a two-domain N-terminal fragment of ribosomal protein L10 from Methanococcus jannaschii reveals a specific piece of the archaeal ribosomal stalk.
    Kravchenko O; Mitroshin I; Nikonov S; Piendl W; Garber M
    J Mol Biol; 2010 Jun; 399(2):214-20. PubMed ID: 20399793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Archaeal RNA polymerase subunits F and P are bona fide homologs of eukaryotic RPB4 and RPB12.
    Werner F; Eloranta JJ; Weinzierl RO
    Nucleic Acids Res; 2000 Nov; 28(21):4299-305. PubMed ID: 11058130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Archaeal ApbC/Nbp35 homologs function as iron-sulfur cluster carrier proteins.
    Boyd JM; Drevland RM; Downs DM; Graham DE
    J Bacteriol; 2009 Mar; 191(5):1490-7. PubMed ID: 19114487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA:(guanine-N2) methyltransferases RsmC/RsmD and their homologs revisited--bioinformatic analysis and prediction of the active site based on the uncharacterized Mj0882 protein structure.
    Bujnicki JM; Rychlewski L
    BMC Bioinformatics; 2002 Apr; 3():10. PubMed ID: 11929612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of a chimeric Rpb5/RpoH subunit using library selection.
    Sommer B; Waege I; Pöllmann D; Seitz T; Thomm M; Sterner R; Hausner W
    PLoS One; 2014; 9(1):e87485. PubMed ID: 24489922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of archaeal tRNA(m(1)G37)methyltransferase aTrm5.
    Goto-Ito S; Ito T; Ishii R; Muto Y; Bessho Y; Yokoyama S
    Proteins; 2008 Sep; 72(4):1274-89. PubMed ID: 18384044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.